A trace fossil, also known as an ichnofossil (pronˈɪknoʊfɒsᵻl; from ἴχνος ikhnos "trace, track"), is a fossil record of biological activity but not the preserved remains of the plant or animal itself. Trace fossils contrast with body fossils, which are the fossilized remains of parts of organisms' bodies, usually altered by later chemical activity or mineralization. The study of such trace fossils is ichnology and is the work of ichnologists.
Trace fossils may consist of impressions made on or in the substrate by an organism. For example, burrows, borings (bioerosion), urolites (erosion caused by evacuation of liquid wastes), footprints and feeding marks and root cavities may all be trace fossils.
The term in its broadest sense also includes the remains of other organic material produced by an organism; for example coprolites (fossilized droppings) or chemical markers (sedimentological structures produced by biological means; for example, the formation of stromatolites). However, most sedimentary structures (for example those produced by empty shells rolling along the sea floor) are not produced through the behaviour of an organism and thus are not considered trace fossils.
The study of traces – ichnology – divides into paleoichnology, or the study of trace fossils, and neoichnology, the study of modern traces. Ichnological science offers many challenges, as most traces reflect the behaviour – not the biological affinity – of their makers. Accordingly, researchers classify trace fossils into form genera, based on their appearance and on the implied behaviour, or ethology, of their makers.
Traces are better known in their fossilized form than in modern sediments. This makes it difficult to interpret some fossils by comparing them with modern traces, even though they may be extant or even common. The main difficulties in accessing extant burrows stem from finding them in consolidated sediment, and being able to access those formed in deeper water.
Trace fossils are best preserved in sandstones; the grain size and depositional facies both contributing to the better preservation.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Identifier et comprendre les débats et problèmes centraux en philosophie de la biologie, notamment autour de l'évolution biologique et de l'émergence du vivant. Evaluer et comparer les arguments cruci
The Cambrian explosion, Cambrian radiation, Cambrian diversification, or the Biological Big Bang refers to an interval of time approximately in the Cambrian Period of early Paleozoic when there was a sudden radiation of complex life and practically all major animal phyla started appearing in the fossil record. It lasted for about 13 – 25 million years and resulted in the divergence of most modern metazoan phyla. The event was accompanied by major diversification in other groups of organisms as well.
Paleontology (ˌpeɪliɒnˈtɒlədʒi,ˌpæli-,-ən-), also spelled palaeontology or palæontology, is the scientific study of life that existed prior to, and sometimes including, the start of the Holocene epoch (roughly 11,700 years before present). It includes the study of fossils to classify organisms and study their interactions with each other and their environments (their paleoecology). Paleontological observations have been documented as far back as the 5th century BC.
The Precambrian (or Pre-Cambrian, sometimes abbreviated pꞒ, or Cryptozoic) is the earliest part of Earth's history, set before the current Phanerozoic Eon. The Precambrian is so named because it preceded the Cambrian, the first period of the Phanerozoic Eon, which is named after Cambria, the Latinised name for Wales, where rocks from this age were first studied. The Precambrian accounts for 88% of the Earth's geologic time. The Precambrian is an informal unit of geologic time, subdivided into three eons (Hadean, Archean, Proterozoic) of the geologic time scale.
Systems theory defines leverage points as places to intervene in order to change a system. Points with high impact on system behavior are notoriously hard to act upon, and indeed most policy intervention is based at the lowest level (#12 in Donella Meadows ...
EPFL2023
, , ,
Reconstructing the locomotion of extinct vertebrates offers insights into their palaeobiology and helps to conceptualize major transitions in vertebrate evolution. However, estimating the locomotor behaviour of a fossil species remains a challenge because ...
2019
, ,
Otoliths are calcium carbonate components of the stato-acoustical organ responsible for hearing and maintenance of the body balance in teleost fish. During their formation, control over, e.g., morphology and carbonate polymorph is influenced by complex ins ...