In structural biology, a protein subunit is a polypeptide chain or single protein molecule that assembles (or "coassembles") with others to form a protein complex. Large assemblies of proteins such as viruses often use a small number of types of protein subunits as building blocks. A subunit is often named with a Greek or Roman letter, and the numbers of this type of subunit in a protein is indicated by a subscript. For example, ATP synthase has a type of subunit called α. Three of these are present in the ATP synthase molecule, leading to the designation α3. Larger groups of subunits can also be specified, like α3β3-hexamer and c-ring. Naturally occurring proteins that have a relatively small number of subunits are referred to as oligomeric. For example, hemoglobin is a symmetrical arrangement of two identical α-globin subunits and two identical β-globin subunits. Longer multimeric proteins such as microtubules and other cytoskeleton proteins may consist of very large numbers of subunits. For example, dynein is a multimeric protein complex involving two heavy chains (DHCs), two intermediate chains (ICs), two light-intermediate chains (LICs) and several light chains (LCs). The subunits of a protein complex may be identical, homologous or totally dissimilar and dedicated to disparate tasks. In some protein assemblies, one subunit may be a "catalytic subunit" that enzymatically catalyzes a reaction, whereas a "regulatory subunit" will facilitate or inhibit the activity. Although telomerase has telomerase reverse transcriptase as a catalytic subunit, regulation is accomplished by factors outside the protein. An enzyme composed of both regulatory and catalytic subunits when assembled is often referred to as a holoenzyme. For example, class I phosphoinositide 3-kinase is composed of a p110 catalytic subunit and a p85 regulatory subunit. One subunit is made of one polypeptide chain. A polypeptide chain has one gene coding for it – meaning that a protein must have one gene for each unique subunit.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related publications (74)