In physics, a "coffee ring" is a pattern left by a puddle of particle-laden liquid after it evaporates. The phenomenon is named for the characteristic ring-like deposit along the perimeter of a spill of coffee. It is also commonly seen after spilling red wine. The mechanism behind the formation of these and similar rings is known as the coffee ring effect or in some instances, the coffee stain effect, or simply ring stain. The coffee-ring pattern originates from the capillary flow induced by the evaporation of the drop: liquid evaporating from the edge is replenished by liquid from the interior. The resulting current can carry nearly all the dispersed material to the edge. As a function of time, this process exhibits a "rush-hour" effect, that is, a rapid acceleration of the flow towards the edge at the final stage of the drying process. Evaporation induces a Marangoni flow inside a droplet. The flow, if strong, redistributes particles back to the center of the droplet. Thus, for particles to accumulate at the edges, the liquid must have a weak Marangoni flow, or something must occur to disrupt the flow. For example, surfactants can be added to reduce the liquid's surface tension gradient, disrupting the induced flow. Water has a weak Marangoni flow to begin with, which is then reduced significantly by natural surfactants. Interaction of the particles suspended in a droplet with the free surface of the droplet is important in creating a coffee ring. "When the drop evaporates, the free surface collapses and traps the suspended particles ... eventually all the particles are captured by the free surface and stay there for the rest of their trip towards the edge of the drop." This result means that surfactants can be used to manipulate the motion of the solute particles by changing the surface tension of the drop, rather than trying to control the bulk flow inside the drop. A number of interesting morphologies of the deposited particles can result. For example, an enantiopure poly (isocyanate) derivative has been shown to form ordered arrays of squashed donut structures.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.