Nokia Bell Labs, originally named Bell Telephone Laboratories (1925–1984),
then AT&T Bell Laboratories (1984–1996)
and Bell Labs Innovations (1996–2007),
is an American industrial research and scientific development company owned by Finnish company Nokia. With headquarters located in Murray Hill, New Jersey, the company operates several laboratories in the United States and around the world.
Researchers working at Bell Laboratories are credited with the development of radio astronomy, the transistor, the laser, the photovoltaic cell, the charge-coupled device (CCD), information theory, the Unix operating system, and the programming languages B, C, C++, S, SNOBOL, AWK, AMPL, and others. Nine Nobel Prizes have been awarded for work completed at Bell Laboratories.
Bell Labs had its origin in the complex corporate organization of the Bell System telephone conglomerate. In the late 19th century, the laboratory began as the Western Electric Engineering Department, located at 463 West Street in New York City. In 1925, after years of conducting research and development under Western Electric, a Bell subsidiary, the Engineering Department was reformed into Bell Telephone Laboratories and placed under the shared ownership of the American Telephone and Telegraph Company (AT&T) and Western Electric. In the 1960s, the laboratory was moved to New Jersey. It was acquired by Nokia in 2016.
In 1880, when the French government awarded Alexander Graham Bell the Volta Prize of 50,000 francs for the invention of the telephone (equivalent to about US10,000atthetime,orabout now), he used the award to fund the Volta Laboratory (also known as the "Alexander Graham Bell Laboratory") in Washington, D.C. in collaboration with Sumner Tainter and Bell's cousin Chichester Bell. The laboratory was variously known as the Volta Bureau, the Bell Carriage House, the Bell Laboratory and the Volta Laboratory.
It focused on the analysis, recording, and transmission of sound.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A transistor is a semiconductor device used to amplify or switch electrical signals and power. It is one of the basic building blocks of modern electronics. It is composed of semiconductor material, usually with at least three terminals for connection to an electronic circuit. A voltage or current applied to one pair of the transistor's terminals controls the current through another pair of terminals. Because the controlled (output) power can be higher than the controlling (input) power, a transistor can amplify a signal.
Unix (ˈjuːnᵻks; trademarked as UNIX) is a family of multitasking, multi-user computer operating systems that derive from the original AT&T Unix, whose development started in 1969 at the Bell Labs research center by Ken Thompson, Dennis Ritchie, and others. Initially intended for use inside the Bell System, AT&T licensed Unix to outside parties in the late 1970s, leading to a variety of both academic and commercial Unix variants from vendors including University of California, Berkeley (BSD), Microsoft (Xenix), Sun Microsystems (SunOS/Solaris), HP/HPE (HP-UX), and IBM (AIX).
An integrated circuit or monolithic integrated circuit (also referred to as an IC, a chip, or a microchip) is a set of electronic circuits on one small flat piece (or "chip") of semiconductor material, usually silicon. Large numbers of miniaturized transistors and other electronic components are integrated together on the chip. This results in circuits that are orders of magnitude smaller, faster, and less expensive than those constructed of discrete components, allowing a large transistor count.
Information is processed in physical devices. In the quantum regime the concept of classical bit is replaced by the quantum bit. We introduce quantum principles, and then quantum communications, key d
The dynamics of ordinary matter in the Universe follows the laws of (magneto)hydrodynamics. In this course, the system of equations that describes astrophysical fluids will be discussed on the basis o
Despite recent advancements in photonics and electronics, there remains a lack of efficient, compact, high-power sources in the terahertz spectrum (0.3-10 THz). Recent research has revealed that nanoplasma (NP) switches can exhibit extremely fast transitio ...
2024
Selective area epitaxy (SAE), applied to semiconductor growth, allows tailored fabrication of intricate structures at the nanoscale with enhanced properties and functionalities. In the field of nanowires (NWs), it adds scalability by enabling the fabricati ...
Expected subject: [Infoscience] Please verify the affiliation of a publication Expected body: Hello, A new record in Infoscience has provisionally been assigned to your lab/unit. As lab manager, it is your responsibility to confirm or deny this affiliation ...