Concept

Neural network software

Neural network software is used to simulate, research, develop, and apply artificial neural networks, software concepts adapted from biological neural networks, and in some cases, a wider array of adaptive systems such as artificial intelligence and machine learning. Neural network simulators are software applications that are used to simulate the behavior of artificial or biological neural networks. They focus on one or a limited number of specific types of neural networks. They are typically stand-alone and not intended to produce general neural networks that can be integrated in other software. Simulators usually have some form of built-in visualization to monitor the training process. Some simulators also visualize the physical structure of the neural network. Historically, the most common type of neural network software was intended for researching neural network structures and algorithms. The primary purpose of this type of software is, through simulation, to gain a better understanding of the behavior and the properties of neural networks. Today in the study of artificial neural networks, simulators have largely been replaced by more general component based development environments as research platforms. Commonly used artificial neural network simulators include the Stuttgart Neural Network Simulator (SNNS), and Emergent. In the study of biological neural networks however, simulation software is still the only available approach. In such simulators the physical biological and chemical properties of neural tissue, as well as the electromagnetic impulses between the neurons are studied. Commonly used biological network simulators include Neuron, GENESIS, NEST and Brian. Unlike the research simulators, data analysis simulators are intended for practical applications of artificial neural networks. Their primary focus is on data mining and forecasting. Data analysis simulators usually have some form of preprocessing capabilities. Unlike the more general development environments, data analysis simulators use a relatively simple static neural network that can be configured.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (6)
DH-406: Machine learning for DH
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
BIO-322: Introduction to machine learning for bioengineers
Students understand basic concepts and methods of machine learning. They can describe them in mathematical terms and can apply them to data using a high-level programming language (julia/python/R).
MICRO-573: Deep learning for optical imaging
This course will focus on the practical implementation of artificial neural networks (ANN) using the open-source TensorFlow machine learning library developed by Google for Python.
Show more
Related lectures (32)
Deep Learning Fundamentals
Introduces deep learning, from logistic regression to neural networks, emphasizing the need for handling non-linearly separable data.
Document Analysis: Topic Modeling
Explores document analysis, topic modeling, and generative models for data generation in machine learning.
Cross-Validation: Techniques and Applications
Explores cross-validation, overfitting, regularization, and regression techniques in machine learning.
Show more
Related publications (18)

Safe Deep Neural Networks

Kyle Michael Matoba

				The capabilities of deep learning systems have advanced much faster than our ability to understand them. Whilst the gains from deep neural networks (DNNs) are significant, they are accompanied by a growing risk and gravity of a bad outcome. This is tr ...
EPFL2024

Polynomial-time universality and limitations of deep learning

Emmanuel Abbé

The goal of this paper is to characterize function distributions that general neural networks trained by descent algorithms (GD/SGD), can or cannot learn in polytime. The results are: (1) The paradigm of general neural networks trained by SGD is poly-time ...
WILEY2023

Self-correcting quantum many-body control using reinforcement learning with tensor networks

Friederike Metz

Quantum many-body control is a central milestone en route to harnessing quantum technologies. However, the exponential growth of the Hilbert space dimension with the number of qubits makes it challenging to classically simulate quantum many-body systems an ...
NATURE PORTFOLIO2023
Show more
Related concepts (1)
TensorFlow
TensorFlow is a free and open-source software library for machine learning and artificial intelligence. It can be used across a range of tasks but has a particular focus on training and inference of deep neural networks. TensorFlow was developed by the Google Brain team for internal Google use in research and production. The initial version was released under the Apache License 2.0 in 2015. Google released the updated version of TensorFlow, named TensorFlow 2.0, in September 2019.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.