Concept

Type (model theory)

In model theory and related areas of mathematics, a type is an object that describes how a (real or possible) element or finite collection of elements in a mathematical structure might behave. More precisely, it is a set of first-order formulas in a language L with free variables x1, x2,..., xn that are true of a set of n-tuples of an L-structure . Depending on the context, types can be complete or partial and they may use a fixed set of constants, A, from the structure . The question of which types represent actual elements of leads to the ideas of saturated models and omitting types. Consider a structure for a language L. Let M be the universe of the structure. For every A ⊆ M, let L(A) be the language obtained from L by adding a constant ca for every a ∈ A. In other words, A 1-type (of ) over A is a set p(x) of formulas in L(A) with at most one free variable x (therefore 1-type) such that for every finite subset p0(x) ⊆ p(x) there is some b ∈ M, depending on p0(x), with (i.e. all formulas in p0(x) are true in when x is replaced by b). Similarly an n-type (of ) over A is defined to be a set p(x1,...,xn) = p(x) of formulas in L(A), each having its free variables occurring only among the given n free variables x1,...,xn, such that for every finite subset p0(x) ⊆ p(x) there are some elements b1,...,bn ∈ M with . A complete type of over A is one that is maximal with respect to inclusion. Equivalently, for every either or . Any non-complete type is called a partial type. So, the word type in general refers to any n-type, partial or complete, over any chosen set of parameters (possibly the empty set). An n-type p(x) is said to be realized in if there is an element b ∈ Mn such that . The existence of such a realization is guaranteed for any type by the compactness theorem, although the realization might take place in some elementary extension of , rather than in itself. If a complete type is realized by b in , then the type is typically denoted and referred to as the complete type of b over A.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.