Lossless JPEG is a 1993 addition to JPEG standard by the Joint Photographic Experts Group to enable lossless compression. However, the term may also be used to refer to all lossless compression schemes developed by the group, including JPEG 2000 and JPEG-LS.
Lossless JPEG was developed as a late addition to JPEG in 1993, using a completely different technique from the lossy JPEG standard. It uses a predictive scheme based on the three nearest (causal) neighbors (upper, left, and upper-left), and entropy coding is used on the prediction error. The standard Independent JPEG Group libraries cannot encode or decode it, but Ken Murchison of Oceana Matrix Ltd. wrote a patch that extends the IJG library to handle lossless JPEG. Lossless JPEG has some popularity in medical imaging, and is used in and some digital cameras to compress raw images, but otherwise was never widely adopted. Adobe's DNG SDK provides a software library for encoding and decoding lossless JPEG with up to 16 bits per sample.
ISO/IEC Joint Photography Experts Group maintains a reference software implementation which can encode both base JPEG (ISO/IEC 10918-1 and 18477-1) and JPEG XT extensions (ISO/IEC 18477 Parts 2 and 6-9), as well as JPEG-LS (ISO/IEC 14495).
Lossless JPEG is actually a mode of operation of JPEG. This mode exists because the discrete cosine transform (DCT) based form cannot guarantee that encoder input would exactly match decoder output. Unlike the lossy mode which is based on the DCT, the lossless coding process employs a simple predictive coding model called differential pulse-code modulation (DPCM). This is a model in which predictions of the sample values are estimated from the neighboring samples that are already coded in the image. Most predictors take the average of the samples immediately above and to the left of the target sample. DPCM encodes the differences between the predicted samples instead of encoding each sample independently. The differences from one sample to the next are usually close to zero.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
WebP is a raster graphics developed by Google intended as a replacement for JPEG, PNG, and GIF file formats. It supports both lossy and lossless compression, as well as animation and alpha transparency. Google announced the WebP format in September 2010, and released the first stable version of its supporting library in April 2018. WebP was first announced by Google on 30 September in 2010 as a new open format for lossy compressed true-color graphics on the web, producing files that were smaller than JPEG files for comparable image quality.
JPEG (ˈdʒeɪpɛɡ , short for Joint Photographic Experts Group) is a commonly used method of lossy compression for s, particularly for those images produced by digital photography. The degree of compression can be adjusted, allowing a selectable tradeoff between storage size and . JPEG typically achieves 10:1 compression with little perceptible loss in image quality. Since its introduction in 1992, JPEG has been the most widely used standard in the world, and the most widely used digital , with several billion JPEG images produced every day as of 2015.
Lossless compression is a class of data compression that allows the original data to be perfectly reconstructed from the compressed data with no loss of information. Lossless compression is possible because most real-world data exhibits statistical redundancy. By contrast, lossy compression permits reconstruction only of an approximation of the original data, though usually with greatly improved compression rates (and therefore reduced media sizes).
This course covers fundamental notions in image and video processing, as well as covers most popular tools used, such as edge detection, motion estimation, segmentation, and compression. It is compose
The goal of this course is to introduce the engineering students state-of-the-art speech and audio coding techniques with an emphasis on the integration of knowledge about sound production and auditor
Study of advanced image processing; mathematical imaging. Development of image-processing software and prototyping in Jupyter Notebooks; application to real-world examples in industrial vision and bio
Explores quadriports with double symmetry and quadrature hybrid circuits, including easy and not so easy solutions, lossless cases, and practical applications.
Covers the theory and applications of microwave couplers, including design considerations and practical uses.
, ,
The recent rise in interest in point clouds as an imaging modality has motivated standardization groups such as JPEG and MPEG to launch activities aiming at developing compression standards for point clouds. Lossy compression usually introduces visual arti ...
The Joint Photographic Experts Group (JPEG) AI learning-based image coding system is an ongoing joint standardization effort between International Organization for Standardization (ISO), International Electrotechnical Commission (IEC), and International Te ...
This training dataset includes a total of 34,913 manually transcribed text segments. It is dedicated to the handwritten text recognition (HTR) of historical sources, typically tabular records, such as censuses. This dataset is based on a sample of 83 pages ...