In machine learning, the polynomial kernel is a kernel function commonly used with support vector machines (SVMs) and other kernelized models, that represents the similarity of vectors (training samples) in a feature space over polynomials of the original variables, allowing learning of non-linear models.
Intuitively, the polynomial kernel looks not only at the given features of input samples to determine their similarity, but also combinations of these. In the context of regression analysis, such combinations are known as interaction features. The (implicit) feature space of a polynomial kernel is equivalent to that of polynomial regression, but without the combinatorial blowup in the number of parameters to be learned. When the input features are binary-valued (booleans), then the features correspond to logical conjunctions of input features.
For degree-d polynomials, the polynomial kernel is defined as
where x and y are vectors in the input space, i.e. vectors of features computed from training or test samples and c ≥ 0 is a free parameter trading off the influence of higher-order versus lower-order terms in the polynomial. When c = 0, the kernel is called homogeneous. (A further generalized polykernel divides xTy by a user-specified scalar parameter a.)
As a kernel, K corresponds to an inner product in a feature space based on some mapping φ:
The nature of φ can be seen from an example. Let d = 2, so we get the special case of the quadratic kernel. After using the multinomial theorem (twice—the outermost application is the binomial theorem) and regrouping,
From this it follows that the feature map is given by:
generalizing for ,
where , and applying the multinomial theorem:
The last summation has elements, so that:
where ,
Although the RBF kernel is more popular in SVM classification than the polynomial kernel, the latter is quite popular in natural language processing (NLP).
The most common degree is d = 2 (quadratic), since larger degrees tend to overfit on NLP problems.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
Machine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
This course aims to provide graduate students a thorough grounding in the methods, theory, mathematics and algorithms needed to do research and applications in machine learning. The course covers topi
In machine learning, the radial basis function kernel, or RBF kernel, is a popular kernel function used in various kernelized learning algorithms. In particular, it is commonly used in support vector machine classification. The RBF kernel on two samples and x', represented as feature vectors in some input space, is defined as may be recognized as the squared Euclidean distance between the two feature vectors. is a free parameter.
In machine learning, kernel machines are a class of algorithms for pattern analysis, whose best known member is the support-vector machine (SVM). These methods involve using linear classifiers to solve nonlinear problems. The general task of pattern analysis is to find and study general types of relations (for example clusters, rankings, principal components, correlations, classifications) in datasets.
In machine learning, support vector machines (SVMs, also support vector networks) are supervised learning models with associated learning algorithms that analyze data for classification and regression analysis. Developed at AT&T Bell Laboratories by Vladimir Vapnik with colleagues (Boser et al., 1992, Guyon et al., 1993, Cortes and Vapnik, 1995, Vapnik et al., 1997) SVMs are one of the most robust prediction methods, being based on statistical learning frameworks or VC theory proposed by Vapnik (1982, 1995) and Chervonenkis (1974).
Explores non-linear SVM using kernels for data separation in higher-dimensional spaces, optimizing training with kernels to avoid explicit transformations.
Kernel methods are fundamental tools in machine learning that allow detection of non-linear dependencies between data without explicitly constructing feature vectors in high dimensional spaces. A major disadvantage of kernel methods is their poor scalabili ...
Over the last two decades, data-powered machine learning (ML) tools have profoundly transformed numerous scientific fields. In computational chemistry, machine learning applications have permitted faster predictions of chemical properties and provided powe ...
Random Fourier features (RFFs) provide a promising way for kernel learning in a spectral case. Current RFFs-based kernel learning methods usually work in a two-stage way. In the first-stage process, learn-ing an optimal feature map is often formulated as a ...