The neutron detection temperature, also called the neutron energy, indicates a free neutron's kinetic energy, usually given in electron volts. The term temperature is used, since hot, thermal and cold neutrons are moderated in a medium with a certain temperature. The neutron energy distribution is then adapted to the Maxwell distribution known for thermal motion. Qualitatively, the higher the temperature, the higher the kinetic energy of the free neutrons. The momentum and wavelength of the neutron are related through the de Broglie relation. The long wavelength of slow neutrons allows for the large cross section.
But different ranges with different names are observed in other sources.
The following is a detailed classification:
A thermal neutron is a free neutron with a kinetic energy of about 0.025 eV (about 4.0×10−21 J or 2.4 MJ/kg, hence a speed of 2.19 km/s), which is the energy corresponding to the most probable speed at a temperature of 290 K (17 °C or 62 °F), the mode of the Maxwell–Boltzmann distribution for this temperature, Epeak = 1/2 k T.
After a number of collisions with nuclei (scattering) in a medium (neutron moderator) at this temperature, those neutrons which are not absorbed reach about this energy level.
Thermal neutrons have a different and sometimes much larger effective neutron absorption cross-section for a given nuclide than fast neutrons, and can therefore often be absorbed more easily by an atomic nucleus, creating a heavier, often unstable isotope of the chemical element as a result. This event is called neutron activation.
Neutrons of energy greater than thermal
Greater than 0.025 eV
Neutrons which are strongly absorbed by cadmium
Less than 0.5 eV.
Neutrons which are not strongly absorbed by cadmium
Greater than 0.5 eV.
Neutrons of lower (much lower) energy than thermal neutrons.
Less than 5 meV.
Cold (slow) neutrons are subclassified into cold (CN), very cold (VCN), and ultra-cold (UCN) neutrons, each having particular characteristics in terms of their optical interactions with matter.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In this course, one acquires an understanding of the basic neutronics interactions occurring in a nuclear fission reactor as well as the conditions for establishing and controlling a nuclear chain rea
This course is intended to understand the engineering design of nuclear power plants using the basic principles of reactor physics, fluid flow and heat transfer. This course includes the following: Re
The course presents the detection of ionizing radiation in the keV and MeV energy ranges. Physical processes of radiation/matter interaction are introduced. All steps of detection are covered, as well
The first MOOC to teach the basics of plasma physics and its main applications: fusion energy, astrophysical and space plasmas, societal and industrial applications
The first MOOC to teach the basics of plasma physics and its main applications: fusion energy, astrophysical and space plasmas, societal and industrial applications
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Elastic scattering is a form of particle scattering in scattering theory, nuclear physics and particle physics. In this process, the kinetic energy of a particle is conserved in the center-of-mass frame, but its direction of propagation is modified (by interaction with other particles and/or potentials) meaning the two particles in the collision do not lose energy. Furthermore, while the particle's kinetic energy in the center-of-mass frame is constant, its energy in the lab frame is not.
Neutron capture is a nuclear reaction in which an atomic nucleus and one or more neutrons collide and merge to form a heavier nucleus. Since neutrons have no electric charge, they can enter a nucleus more easily than positively charged protons, which are repelled electrostatically. Neutron capture plays a significant role in the cosmic nucleosynthesis of heavy elements. In stars it can proceed in two ways: as a rapid process (r-process) or a slow process (s-process). Nuclei of masses greater than 56 cannot be formed by thermonuclear reactions (i.
Isotopes are distinct nuclear species (or nuclides, as technical term) of the same element. They have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), but differ in nucleon numbers (mass numbers) due to different numbers of neutrons in their nuclei. While all isotopes of a given element have almost the same chemical properties, they have different atomic masses and physical properties.
This article outlines the advancements made in broadening the application scope of the OpenMC neutron transport code to include thermohydraulic coupling and nuclear data uncertainty propagation. These developments primarily involve the incorporation of the ...
The Fast Discharge Units (FDUs) of the Superconducting (SC) Toroidal Field (TF) coils in the European demonstration fusion power plant DEMO warrant the machine integrity over its full lifetime against severe failure events, such as SC coil quenches or any ...
Elsevier Science Sa2024
Conducting neutron scattering experiments in the presence of high pulsed magnetic fields, namely above 40 T, provides valuable information about the magnetic structures of materials. However, these experiments are challenging and time-consuming because the ...