The Horner–Wadsworth–Emmons (HWE) reaction is a chemical reaction used in organic chemistry of stabilized phosphonate carbanions with aldehydes (or ketones) to produce predominantly E-alkenes. In 1958, Leopold Horner published a modified Wittig reaction using phosphonate-stabilized carbanions. William S. Wadsworth and William D. Emmons further defined the reaction. In contrast to phosphonium ylides used in the Wittig reaction, phosphonate-stabilized carbanions are more nucleophilic but less basic. Likewise, phosphonate-stabilized carbanions can be alkylated. Unlike phosphonium ylides, the dialkylphosphate salt byproduct is easily removed by aqueous extraction. Several reviews have been published. The Horner–Wadsworth–Emmons reaction begins with the deprotonation of the phosphonate to give the phosphonate carbanion 1. Nucleophilic addition of the carbanion onto the aldehyde 2 (or ketone) producing 3a or 3b is the rate-limiting step. If R2 = H, then intermediates 3a and 4a and intermediates 3b and 4b can interconvert with each other. The final elimination of oxaphosphetanes 4a and 4b yield (E)-alkene 5 and (Z)-alkene 6, with the by-product being a dialkyl-phosphate. The ratio of alkene isomers 5 and 6 is not dependent upon the stereochemical outcome of the initial carbanion addition and upon the ability of the intermediates to equilibrate. The electron-withdrawing group (EWG) alpha to the phosphonate is necessary for the final elimination to occur. In the absence of an electron-withdrawing group, the final product is the α-hydroxyphosphonate 3a and 3b. However, these α-hydroxyphosphonates can be transformed to alkenes by reaction with diisopropylcarbodiimide. The Horner–Wadsworth–Emmons reaction favours the formation of (E)-alkenes. In general, the more equilibration amongst intermediates, the higher the selectivity for (E)-alkene formation. Thompson and Heathcock have performed a systematic study of the reaction of methyl 2-(dimethylphosphono)acetate with various aldehydes.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (1)

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.