Concept

Johnson bound

Related concepts (4)
Griesmer bound
In the mathematics of coding theory, the Griesmer bound, named after James Hugo Griesmer, is a bound on the length of linear binary codes of dimension k and minimum distance d. There is also a very similar version for non-binary codes. For a binary linear code, the Griesmer bound is: Let denote the minimum length of a binary code of dimension k and distance d. Let C be such a code. We want to show that Let G be a generator matrix of C. We can always suppose that the first row of G is of the form r = (1, ...
Plotkin bound
In the mathematics of coding theory, the Plotkin bound, named after Morris Plotkin, is a limit (or bound) on the maximum possible number of codewords in binary codes of given length n and given minimum distance d. A code is considered "binary" if the codewords use symbols from the binary alphabet . In particular, if all codewords have a fixed length n, then the binary code has length n. Equivalently, in this case the codewords can be considered elements of vector space over the finite field .
Singleton bound
In coding theory, the Singleton bound, named after Richard Collom Singleton, is a relatively crude upper bound on the size of an arbitrary block code with block length , size and minimum distance . It is also known as the Joshibound. proved by and even earlier by . The minimum distance of a set of codewords of length is defined as where is the Hamming distance between and . The expression represents the maximum number of possible codewords in a -ary block code of length and minimum distance .
Hamming bound
In mathematics and computer science, in the field of coding theory, the Hamming bound is a limit on the parameters of an arbitrary block code: it is also known as the sphere-packing bound or the volume bound from an interpretation in terms of packing balls in the Hamming metric into the space of all possible words. It gives an important limitation on the efficiency with which any error-correcting code can utilize the space in which its code words are embedded. A code that attains the Hamming bound is said to be a perfect code.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.