In mathematics, a singleton, also known as a unit set or one-point set, is a set with exactly one element. For example, the set is a singleton whose single element is .
Within the framework of Zermelo–Fraenkel set theory, the axiom of regularity guarantees that no set is an element of itself. This implies that a singleton is necessarily distinct from the element it contains, thus 1 and {1} are not the same thing, and the empty set is distinct from the set containing only the empty set. A set such as is a singleton as it contains a single element (which itself is a set, however, not a singleton).
A set is a singleton if and only if its cardinality is . In von Neumann's set-theoretic construction of the natural numbers, the number 1 is defined as the singleton
In axiomatic set theory, the existence of singletons is a consequence of the axiom of pairing: for any set A, the axiom applied to A and A asserts the existence of which is the same as the singleton (since it contains A, and no other set, as an element).
If A is any set and S is any singleton, then there exists precisely one function from A to S, the function sending every element of A to the single element of S. Thus every singleton is a terminal object in the .
A singleton has the property that every function from it to any arbitrary set is injective. The only non-singleton set with this property is the empty set.
Every singleton set is an ultra prefilter. If is a set and then the upward of in which is the set is a principal ultrafilter on Moreover, every principal ultrafilter on is necessarily of this form. The ultrafilter lemma implies that non-principal ultrafilters exist on every infinite set (these are called ).
Every net valued in a singleton subset of is an ultranet in
The Bell number integer sequence counts the number of partitions of a set (), if singletons are excluded then the numbers are smaller ().
Structures built on singletons often serve as terminal objects or zero objects of various :
The statement above shows that the singleton sets are precisely the terminal objects in the category of sets.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course introduces the students to the basic notions
of computer architecture and, in particular, to the
choices of the Instruction Set Architecture and to the
memory hierarchy of modern systems.
In mathematics, specifically set theory, the Cartesian product of two sets A and B, denoted A × B, is the set of all ordered pairs (a, b) where a is in A and b is in B. In terms of set-builder notation, that is A table can be created by taking the Cartesian product of a set of rows and a set of columns. If the Cartesian product rows × columns is taken, the cells of the table contain ordered pairs of the form (row value, column value).
In mathematics, a partition of a set is a grouping of its elements into non-empty subsets, in such a way that every element is included in exactly one subset. Every equivalence relation on a set defines a partition of this set, and every partition defines an equivalence relation. A set equipped with an equivalence relation or a partition is sometimes called a setoid, typically in type theory and proof theory. A partition of a set X is a set of non-empty subsets of X such that every element x in X is in exactly one of these subsets (i.
In axiomatic set theory and the branches of mathematics and philosophy that use it, the axiom of infinity is one of the axioms of Zermelo–Fraenkel set theory. It guarantees the existence of at least one infinite set, namely a set containing the natural numbers. It was first published by Ernst Zermelo as part of his set theory in 1908. In the formal language of the Zermelo–Fraenkel axioms, the axiom reads: In words, there is a set I (the set that is postulated to be infinite), such that the empty set is in I, and such that whenever any x is a member of I, the set formed by taking the union of x with its singleton {x} is also a member of I.
A variational technique is used to derive analytical expressions for the sensitivity of several topological indicators of flow separation to steady actuation. Considering the boundary layer flow above a wall-mounted bump, the six following representative q ...