Alphabetical order is a system whereby character strings are placed in order based on the position of the characters in the conventional ordering of an alphabet. It is one of the methods of collation. In mathematics, a lexicographical order is the generalization of the alphabetical order to other data types, such as sequences of numbers or other ordered mathematical objects. When applied to strings or sequences that may contain digits, numbers or more elaborate types of elements, in addition to alphabetical characters, the alphabetical order is generally called a lexicographical order. To determine which of two strings of characters comes first when arranging in alphabetical order, their first letters are compared. If they differ, then the string whose first letter comes earlier in the alphabet comes before the other string. If the first letters are the same, then the second letters are compared, and so on. If a position is reached where one string has no more letters to compare while the other does, then the first (shorter) string is deemed to come first in alphabetical order. Capital or upper case letters are generally considered to be identical to their corresponding lower case letters for the purposes of alphabetical ordering, although conventions may be adopted to handle situations where two strings differ only in capitalization. Various conventions also exist for the handling of strings containing spaces, modified letters, such as those with diacritics, and non-letter characters such as marks of punctuation. The result of placing a set of words or strings in alphabetical order is that all of the strings beginning with the same letter are grouped together; within that grouping all words beginning with the same two-letter sequence are grouped together; and so on. The system thus tends to maximize the number of common initial letters between adjacent words. Alphabetical order was first used in the 1st millennium BCE by Northwest Semitic scribes using the abjad system.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (3)
PHYS-512: Statistical physics of computation
The students understand tools from the statistical physics of disordered systems, and apply them to study computational and statistical problems in graph theory, discrete optimisation, inference and m
MATH-111(e): Linear Algebra
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications.
ME-221: Dynamical systems
Provides the students with basic notions and tools for the analysis of dynamic systems. Shows them how to develop mathematical models of dynamic systems and perform analysis in time and frequency doma

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.