Concept

Semisimple algebra

In ring theory, a branch of mathematics, a semisimple algebra is an associative artinian algebra over a field which has trivial Jacobson radical (only the zero element of the algebra is in the Jacobson radical). If the algebra is finite-dimensional this is equivalent to saying that it can be expressed as a Cartesian product of simple subalgebras. The Jacobson radical of an algebra over a field is the ideal consisting of all elements that annihilate every simple left-module. The radical contains all nilpotent ideals, and if the algebra is finite-dimensional, the radical itself is a nilpotent ideal. A finite-dimensional algebra is then said to be semisimple if its radical contains only the zero element. An algebra A is called simple if it has no proper ideals and A2 = {ab | a, b ∈ A} ≠ {0}. As the terminology suggests, simple algebras are semisimple. The only possible ideals of a simple algebra A are A and {0}. Thus if A is simple, then A is not nilpotent. Because A2 is an ideal of A and A is simple, A2 = A. By induction, An = A for every positive integer n, i.e. A is not nilpotent. Any self-adjoint subalgebra A of n × n matrices with complex entries is semisimple. Let Rad(A) be the radical of A. Suppose a matrix M is in Rad(A). Then MM lies in some nilpotent ideals of A, therefore (MM)k = 0 for some positive integer k. By positive-semidefiniteness of MM, this implies MM = 0. So M x is the zero vector for all x, i.e. M = 0. If {Ai} is a finite collection of simple algebras, then their Cartesian product A=Π Ai is semisimple. If (ai) is an element of Rad(A) and e1 is the multiplicative identity in A1 (all simple algebras possess a multiplicative identity), then (a1, a2, ...) · (e1, 0, ...) = (a1, 0..., 0) lies in some nilpotent ideal of Π Ai. This implies, for all b in A1, a1b is nilpotent in A1, i.e. a1 ∈ Rad(A1). So a1 = 0. Similarly, ai = 0 for all other i. It is less apparent from the definition that the converse of the above is also true, that is, any finite-dimensional semisimple algebra is isomorphic to a Cartesian product of a finite number of simple algebras.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.