In set theory, a hereditary set (or pure set) is a set whose elements are all hereditary sets. That is, all elements of the set are themselves sets, as are all elements of the elements, and so on.
For example, it is vacuously true that the empty set is a hereditary set, and thus the set containing only the empty set is a hereditary set. Similarly, a set that contains two elements: the empty set and the set that contains only the empty set, is a hereditary set.
In formulations of set theory that are intended to be interpreted in the von Neumann universe or to express the content of Zermelo–Fraenkel set theory, all sets are hereditary, because the only sort of object that is even a candidate to be an element of a set is another set. Thus the notion of hereditary set is interesting only in a context in which there may be urelements.
The inductive definition of hereditary sets presupposes that set membership is well-founded (i.e., the axiom of regularity), otherwise the recurrence may not have a unique solution. However, it can be restated non-inductively as follows: a set is hereditary if and only if its transitive closure contains only sets.
In this way the concept of hereditary sets can also be extended to non-well-founded set theories in which sets can be members of themselves. For example, a set that contains only itself is a hereditary set.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, a hereditary property is a property of an object that is inherited by all of its subobjects, where the meaning of subobject depends on the context. These properties are particularly considered in topology and graph theory, but also in set theory. In topology, a topological property is said to be hereditary if whenever a topological space has that property, then so does every subspace of it. If the latter is true only for closed subspaces, then the property is called weakly hereditary or closed-hereditary.
In set theory, a branch of mathematics, a set is called transitive if either of the following equivalent conditions hold: whenever , and , then . whenever , and is not an urelement, then is a subset of . Similarly, a class is transitive if every element of is a subset of . Using the definition of ordinal numbers suggested by John von Neumann, ordinal numbers are defined as hereditarily transitive sets: an ordinal number is a transitive set whose members are also transitive (and thus ordinals).
In mathematics and set theory, hereditarily finite sets are defined as finite sets whose elements are all hereditarily finite sets. In other words, the set itself is finite, and all of its elements are finite sets, recursively all the way down to the empty set. A recursive definition of well-founded hereditarily finite sets is as follows: Base case: The empty set is a hereditarily finite set. Recursion rule: If a1,...,ak are hereditarily finite, then so is {a1,...,ak}.
We propose a non-parametric regression method that does not rely on the structure of the ground-truth, but only on its regularity properties. The methodology can be readily used for learning surrogate models of nonlinear dynamical systems from data, while ...