Concept

Lockheed Martin Compact Fusion Reactor

Summary
The Lockheed Martin Compact Fusion Reactor (CFR) is a fusion power project at Lockheed Martin’s Skunk Works. Its high-beta configuration, which implies that the ratio of plasma pressure to magnetic pressure is greater than or equal to 1 (compared to tokamak designs' 0.05), allows a compact design and expedited development. The project was active between 2010 and 2019, after that date there have been no updates and it appears the division has shut down. The CFR chief designer and technical team lead, Thomas McGuire studied fusion as a source of space propulsion in response to a NASA desire to improve travel times to Mars. The project began in 2010, and was publicly presented at the Google Solve for X forum on February 7, 2013. In October 2014, Lockheed Martin announced a plan to "build and test a compact fusion reactor in less than a year with a prototype to follow within five years". In May 2016, Rob Weiss announced that Lockheed Martin continued to support the project and would increase its investment in it. CFR plans to achieve high beta (the ratio of plasma pressure to the magnetic pressure) by combining cusp confinement and magnetic mirrors to confine the plasma. Cusps are sharply bent magnetic fields. Ideally, the plasma forms a sheath along the surface of the cusps and plasma leaks out along the axis and edges of the sharply bent field. The plasma lost along the edges recycles back into the cusps. CFR uses two mirror sets. A pair of ring mirrors is placed inside the cylindrical reactor vessel at either end. The other mirror set encircles the reactor cylinder. The ring magnets produce a type of magnetic field known as a diamagnetic cusp, in which magnetic forces rapidly change direction and push the nuclei towards the midpoint between the two rings. The fields from the external magnets push the nuclei back towards the vessel ends. Magnetic field strength is an increasing function of distance from the center. This implies that as the plasma pressure causes the plasma to expand, the magnetic field becomes stronger at the plasma edge, increasing containment.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (6)
PHYS-632: Fusion and industrial plasma technologies
The course provides an overview of the technologies that are essential for fusion developments and for industrial plasma applications, highlighting the synergies between the two fields. The aim is to
MSE-672: LNM Workshop 2023
Seminar for PhD/master-students and postdocs on experimental nuclear materials research and simulation for present and future nuclear systems, with some emphasis on advanced manufacturing and analytic
MSE-600: Effects of radiation on materials
The purpose of this course is to provide the necessary background to understand the effects of irradiation on pure metals and on alloys used in the nuclear industry. The relation between the radiation
Show more