Summary
Border Gateway Protocol (BGP) is a standardized exterior gateway protocol designed to exchange routing and reachability information among autonomous systems (AS) on the Internet. BGP is classified as a path-vector routing protocol, and it makes routing decisions based on paths, network policies, or rule-sets configured by a network administrator. BGP used for routing within an autonomous system is called Interior Border Gateway Protocol, Internal BGP (iBGP). In contrast, the Internet application of the protocol is called Exterior Border Gateway Protocol, External BGP (eBGP). The Border Gateway Protocol was sketched out in 1989 by engineers on the back of "three ketchup-stained napkins", and is still known as the three-napkin protocol. It was first described in 1989 in RFC 1105, and has been in use on the Internet since 1994. IPv6 BGP was first defined in in 1994, and it was improved to in 1998. The current version of BGP is version 4 (BGP4), which was published as in 2006. RFC 4271 corrected errors, clarified ambiguities and updated the specification with common industry practices. The major enhancement was the support for Classless Inter-Domain Routing (CIDR) and use of route aggregation to decrease the size of routing tables. The new RFC allows BGP4 to carry a wide range of IPv4 and IPv6 "address families". It is also called the Multiprotocol Extensions which is Multiprotocol BGP (MP-BGP). BGP neighbors, called peers, are established by manual configuration among routers to create a TCP session on port 179. A BGP speaker sends 19-byte keep-alive messages every 30 seconds (protocol default value, tunable) to maintain the connection. Among routing protocols, BGP is unique in using TCP as its transport protocol. When BGP runs between two peers in the same autonomous system (AS), it is referred to as Internal BGP (iBGP or Interior Border Gateway Protocol). When it runs between different autonomous systems, it is called External BGP (eBGP or Exterior Border Gateway Protocol).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (3)
COM-407: TCP/IP networking
In the lectures you will learn and understand the main ideas that underlie and the way communication networks are built and run. In the labs you will exercise practical configurations.
CS-438: Decentralized systems engineering
A decentralized system is one that works when no single party is in charge or fully trusted. This course teaches decentralized systems principles while guiding students through the engineering of thei
COM-301: Computer security and privacy
This is an introductory course to computer security and privacy. Its goal is to provide students with means to reason about security and privacy problems, and provide them with tools to confront them.
Related concepts (20)
Computer network
A computer network is a set of computers sharing resources located on or provided by network nodes. Computers use common communication protocols over digital interconnections to communicate with each other. These interconnections are made up of telecommunication network technologies based on physically wired, optical, and wireless radio-frequency methods that may be arranged in a variety of network topologies. The nodes of a computer network can include personal computers, servers, networking hardware, or other specialized or general-purpose hosts.
Classless Inter-Domain Routing
Classless Inter-Domain Routing (CIDR ˈsaɪdər,_ˈsɪ-) is a method for allocating IP addresses and for IP routing. The Internet Engineering Task Force introduced CIDR in 1993 to replace the previous classful network addressing architecture on the Internet. Its goal was to slow the growth of routing tables on routers across the Internet, and to help slow the rapid exhaustion of IPv4 addresses.
Virtual private network
A virtual private network (VPN) is a mechanism for creating a secure connection between a computing device and a computer network, or between two networks, using an insecure communication medium such as the public Internet. A VPN can extend a private network (one that disallows or restricts public access), in such a way that it enables users of that network to send and receive data across public networks as if the public networks' devices were directly connected to the private network.
Show more