In mathematics, a multiple is the product of any quantity and an integer. In other words, for the quantities a and b, it can be said that b is a multiple of a if b = na for some integer n, which is called the multiplier. If a is not zero, this is equivalent to saying that is an integer. When a and b are both integers, and b is a multiple of a, then a is called a divisor of b. One says also that a divides b. If a and b are not integers, mathematicians prefer generally to use integer multiple instead of multiple, for clarification. In fact, multiple is used for other kinds of product; for example, a polynomial p is a multiple of another polynomial q if there exists third polynomial r such that p = qr. 14, 49, −21 and 0 are multiples of 7, whereas 3 and −6 are not. This is because there are integers that 7 may be multiplied by to reach the values of 14, 49, 0 and −21, while there are no such integers for 3 and −6. Each of the products listed below, and in particular, the products for 3 and −6, is the only way that the relevant number can be written as a product of 7 and another real number: is not an integer; is not an integer. 0 is a multiple of every number (). The product of any integer and any integer is a multiple of . In particular, , which is equal to , is a multiple of (every integer is a multiple of itself), since 1 is an integer. If and are multiples of then and are also multiples of . In some texts, "a is a submultiple of b" has the meaning of "a being a unit fraction of b" (a=1/b) or, equivalently, "b being an integer multiple n of a" (b=n a). This terminology is also used with units of measurement (for example by the BIPM and NIST), where a unit submultiple is obtained by prefixing the main unit, defined as the quotient of the main unit by an integer, mostly a power of 103. For example, a millimetre is the 1000-fold submultiple of a metre. As another example, one inch may be considered as a 12-fold submultiple of a foot, or a 36-fold submultiple of a yard.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.