Falling and rising factorialsIn mathematics, the falling factorial (sometimes called the descending factorial, falling sequential product, or lower factorial) is defined as the polynomial The rising factorial (sometimes called the Pochhammer function, Pochhammer polynomial, ascending factorial, rising sequential product, or upper factorial) is defined as The value of each is taken to be 1 (an empty product) when These symbols are collectively called factorial powers. The Pochhammer symbol, introduced by Leo August Pochhammer, is the notation (x)_n , where n is a non-negative integer.
Computational fluid dynamicsComputational fluid dynamics (CFD) is a branch of fluid mechanics that uses numerical analysis and data structures to analyze and solve problems that involve fluid flows. Computers are used to perform the calculations required to simulate the free-stream flow of the fluid, and the interaction of the fluid (liquids and gases) with surfaces defined by boundary conditions. With high-speed supercomputers, better solutions can be achieved, and are often required to solve the largest and most complex problems.
Partial differential equationIn mathematics, a partial differential equation (PDE) is an equation which computes a function between various partial derivatives of a multivariable function. The function is often thought of as an "unknown" to be solved for, similar to how x is thought of as an unknown number to be solved for in an algebraic equation like x2 − 3x + 2 = 0. However, it is usually impossible to write down explicit formulas for solutions of partial differential equations.
Binomial coefficientIn mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem. Commonly, a binomial coefficient is indexed by a pair of integers n ≥ k ≥ 0 and is written It is the coefficient of the xk term in the polynomial expansion of the binomial power (1 + x)n; this coefficient can be computed by the multiplicative formula which using factorial notation can be compactly expressed as For example, the fourth power of 1 + x is and the binomial coefficient is the coefficient of the x2 term.
Sheffer sequenceIn mathematics, a Sheffer sequence or poweroid is a polynomial sequence, i.e., a sequence (pn(x) : n = 0, 1, 2, 3, ...) of polynomials in which the index of each polynomial equals its degree, satisfying conditions related to the umbral calculus in combinatorics. They are named for Isador M. Sheffer. Fix a polynomial sequence (pn). Define a linear operator Q on polynomials in x by This determines Q on all polynomials. The polynomial sequence pn is a Sheffer sequence if the linear operator Q just defined is shift-equivariant; such a Q is then a delta operator.
Difference quotientIn single-variable calculus, the difference quotient is usually the name for the expression which when taken to the limit as h approaches 0 gives the derivative of the function f. The name of the expression stems from the fact that it is the quotient of the difference of values of the function by the difference of the corresponding values of its argument (the latter is (x + h) - x = h in this case). The difference quotient is a measure of the average rate of change of the function over an interval (in this case, an interval of length h).
Divided differencesIn mathematics, divided differences is an algorithm, historically used for computing tables of logarithms and trigonometric functions. Charles Babbage's difference engine, an early mechanical calculator, was designed to use this algorithm in its operation. Divided differences is a recursive division process. Given a sequence of data points , the method calculates the coefficients of the interpolation polynomial of these points in the Newton form.
Euler methodIn mathematics and computational science, the Euler method (also called the forward Euler method) is a first-order numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. It is the most basic explicit method for numerical integration of ordinary differential equations and is the simplest Runge–Kutta method. The Euler method is named after Leonhard Euler, who first proposed it in his book Institutionum calculi integralis (published 1768–1870).
Numerical methods for partial differential equationsNumerical methods for partial differential equations is the branch of numerical analysis that studies the numerical solution of partial differential equations (PDEs). In principle, specialized methods for hyperbolic, parabolic or elliptic partial differential equations exist. Finite difference method In this method, functions are represented by their values at certain grid points and derivatives are approximated through differences in these values.
Brook TaylorBrook Taylor (18 August 1685 – 29 December 1731) was an English mathematician best known for creating Taylor's theorem and the Taylor series, which are important for their use in mathematical analysis. Brook Taylor was born in Edmonton (former Middlesex). Taylor was the son of John Taylor, MP of Patrixbourne, Kent and Olivia Tempest, the daughter of Sir Nicholas Tempest, Baronet of Durham. He entered St John's College, Cambridge, as a fellow-commoner in 1701, and took degrees in LL.B. in 1709 and LL.D. in 1714.