Concept

Shiing-Shen Chern

Summary
Shiing-Shen Chern (tʃɜrn; , tʂhən.ɕiŋ.ʂən; October 28, 1911 – December 3, 2004) was a Chinese-American mathematician and poet. He made fundamental contributions to differential geometry and topology. He has been called the "father of modern differential geometry" and is widely regarded as a leader in geometry and one of the greatest mathematicians of the twentieth century, winning numerous awards and recognition including the Wolf Prize and the inaugural Shaw Prize. In memory of Shiing-Shen Chern, the International Mathematical Union established the Chern Medal in 2010 to recognize "an individual whose accomplishments warrant the highest level of recognition for outstanding achievements in the field of mathematics". Chern worked at the Institute for Advanced Study (1943–45), spent about a decade at the University of Chicago (1949-1960), and then moved to University of California, Berkeley, where he co-founded the Mathematical Sciences Research Institute in 1982 and was the institute's founding director. Renowned co-authors with Chern include Jim Simons, an American mathematician and billionaire hedge fund manager. Chern's work, most notably the Chern-Gauss-Bonnet Theorem, Chern–Simons theory, and Chern classes, are still highly influential in current research in mathematics, including geometry, topology, and knot theory; as well as many branches of physics, including string theory, condensed matter physics, general relativity, and quantum field theory. According to Taking the Long View: The Life of Shiing-shen Chern (2011):[His] formidable mathematical contributions were matched by an approach and vision that helped build bridges between China and the West. Chern's surname (陈) is a common Chinese surname which is now usually spelled Chen. The unusual spelling "Chern" is from the old Gwoyeu Romatzyh (GR) romanization for Mandarin Chinese used in early twentieth-century China. It uses special spelling rules to indicate different tones of Mandarin, which is a tonal language with four tones.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.