In biogeochemistry, remineralisation (or remineralization) refers to the breakdown or transformation of organic matter (those molecules derived from a biological source) into its simplest inorganic forms. These transformations form a crucial link within ecosystems as they are responsible for liberating the energy stored in organic molecules and recycling matter within the system to be reused as nutrients by other organisms.
Remineralisation is normally viewed as it relates to the cycling of the major biologically important elements such as carbon, nitrogen and phosphorus. While crucial to all ecosystems, the process receives special consideration in aquatic settings, where it forms a significant link in the biogeochemical dynamics and cycling of aquatic ecosystems.
The term "remineralization" is used in several contexts across different disciplines. The term is most commonly used in the medicinal and physiological fields, where it describes the development or redevelopment of mineralized structures in organisms such as teeth or bone. In the field of biogeochemistry, however, remineralization is used to describe a link in the chain of elemental cycling within a specific ecosystem. In particular, remineralization represents the point where organic material constructed by living organisms is broken down into basal inorganic components that are not obviously identifiable as having come from an organic source. This differs from the process of decomposition which is a more general descriptor of larger structures degrading to smaller structures.
Biogeochemists study this process across all ecosystems for a variety of reasons. This is done primarily to investigate the flow of material and energy in a given system, which is key to understanding the productivity of that ecosystem along with how it recycles material versus how much is entering the system. Understanding the rates and dynamics of organic matter remineralization in a given system can help in determining how or why some ecosystems might be more productive than others.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Focus is on lakes, rivers and reservoirs as aquatic systems. Specific is the quantitative analyse (incl. exercises) of physical, biogeochemical and sedimentological processes / interactions. The goal
"Microbiology for engineers" covers the main microbial processes that take place in the environment and in treatment systems. It presents elemental cycles that are catalyzed by microorganisms and that
Particulate organic matter (POM) is a fraction of total organic matter operationally defined as that which does not pass through a filter pore size that typically ranges in size from 0.053 millimeters (53 μm) to 2 millimeters. Particulate organic carbon (POC) is a closely related term often used interchangeably with POM. POC refers specifically to the mass of carbon in the particulate organic material, while POM refers to the total mass of the particulate organic matter.
In the deep ocean, marine snow (also known as "ocean dandruff") is a continuous shower of mostly organic detritus falling from the upper layers of the water column. It is a significant means of exporting energy from the light-rich photic zone to the aphotic zone below, which is referred to as the biological pump. Export production is the amount of organic matter produced in the ocean by primary production that is not recycled (remineralised) before it sinks into the aphotic zone.
In biology, detritus (dᵻˈtraɪtəs) is dead particulate organic material, as distinguished from dissolved organic material. Detritus typically includes the bodies or fragments of bodies of dead organisms, and fecal material. Detritus typically hosts communities of microorganisms that colonize and decompose (i.e. remineralize) it. In terrestrial ecosystems it is present as leaf litter and other organic matter that is intermixed with soil, which is denominated "soil organic matter".
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.
Sorption of mercury (Hg) in soils is suggested to be predominantly associated with organic matter (OM). However, there is a growing collection of research that suggests that clay minerals and oxides are also important solid phases for the sorption of solu ...
2024
,
High-mountain ecosystems are experiencing acute effects of climate change, most visibly through glacier recession and the greening of the terrestrial environment. The streams draining these landscapes are affected by these shifts, integrating hydrologic, g ...
Reduction-oxidation (redox) reactions underlie essentially all biogeochemical cycles. Like most soil properties and processes, redox is spatiotemporally heterogeneous. However, unlike other soil features, redox heterogeneity has yet to be incorporated into ...