Inverse functionIn mathematics, the inverse function of a function f (also called the inverse of f) is a function that undoes the operation of f. The inverse of f exists if and only if f is bijective, and if it exists, is denoted by For a function , its inverse admits an explicit description: it sends each element to the unique element such that f(x) = y. As an example, consider the real-valued function of a real variable given by f(x) = 5x − 7. One can think of f as the function which multiplies its input by 5 then subtracts 7 from the result.
Involution (mathematics)In mathematics, an involution, involutory function, or self-inverse function is a function f that is its own inverse, f(f(x)) = x for all x in the domain of f. Equivalently, applying f twice produces the original value. Any involution is a bijection. The identity map is a trivial example of an involution. Examples of nontrivial involutions include negation (), reciprocation (), and complex conjugation () in arithmetic; reflection, half-turn rotation, and circle inversion in geometry; complementation in set theory; and reciprocal ciphers such as the ROT13 transformation and the Beaufort polyalphabetic cipher.