Transfinite inductionTransfinite induction is an extension of mathematical induction to well-ordered sets, for example to sets of ordinal numbers or cardinal numbers. Its correctness is a theorem of ZFC. Let be a property defined for all ordinals . Suppose that whenever is true for all , then is also true. Then transfinite induction tells us that is true for all ordinals. Usually the proof is broken down into three cases: Zero case: Prove that is true. Successor case: Prove that for any successor ordinal , follows from (and, if necessary, for all ).
Real numberIn mathematics, a real number is a number that can be used to measure a continuous one-dimensional quantity such as a distance, duration or temperature. Here, continuous means that pairs of values can have arbitrarily small differences. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and more generally in all mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives.
CardinalityIn mathematics, the cardinality of a set is a measure of the number of elements of the set. For example, the set contains 3 elements, and therefore has a cardinality of 3. Beginning in the late 19th century, this concept was generalized to infinite sets, which allows one to distinguish between different types of infinity, and to perform arithmetic on them. There are two approaches to cardinality: one which compares sets directly using bijections and injections, and another which uses cardinal numbers.
Limit ordinalIn set theory, a limit ordinal is an ordinal number that is neither zero nor a successor ordinal. Alternatively, an ordinal λ is a limit ordinal if there is an ordinal less than λ, and whenever β is an ordinal less than λ, then there exists an ordinal γ such that β < γ < λ. Every ordinal number is either zero, or a successor ordinal, or a limit ordinal. For example, the smallest limit ordinal is ω, the smallest ordinal greater than every natural number. This is a limit ordinal because for any smaller ordinal (i.