Blowfish is a symmetric-key block cipher, designed in 1993 by Bruce Schneier and included in many cipher suites and encryption products. Blowfish provides a good encryption rate in software, and no effective cryptanalysis of it has been found to date. However, the Advanced Encryption Standard (AES) now receives more attention, and Schneier recommends Twofish for modern applications.
Schneier designed Blowfish as a general-purpose algorithm, intended as an alternative to the aging DES and free of the problems and constraints associated with other algorithms. At the time Blowfish was released, many other designs were proprietary, encumbered by patents, or were commercial or government secrets. Schneier has stated that "Blowfish is unpatented, and will remain so in all countries. The algorithm is hereby placed in the public domain, and can be freely used by anyone."
Notable features of the design include key-dependent S-boxes and a highly complex key schedule.
Blowfish has a 64-bit block size and a variable key length from 32 bits up to 448 bits. It is a 16-round Feistel cipher and uses large key-dependent S-boxes. In structure it resembles CAST-128, which uses fixed S-boxes.
The adjacent diagram shows Blowfish's encryption routine. Each line represents 32 bits. There are five subkey-arrays: one 18-entry P-array (denoted as K in the diagram, to avoid confusion with the Plaintext) and four 256-entry S-boxes (S0, S1, S2 and S3).
Every round r consists of 4 actions:
The F-function splits the 32-bit input into four 8-bit quarters and uses the quarters as input to the S-boxes. The S-boxes accept 8-bit input and produce 32-bit output. The outputs are added modulo 232 and XORed to produce the final 32-bit output (see image in the upper right corner).
After the 16th round, undo the last swap, and XOR L with K18 and R with K17 (output whitening).
Decryption is exactly the same as encryption, except that P1, P2, ..., P18 are used in the reverse order. This is not so obvious because xor is commutative and associative.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course introduces the basics of cryptography. We review several types of cryptographic primitives, when it is safe to use them and how to select the appropriate security parameters. We detail how
This is an introductory course to computer security and privacy. Its goal is to provide students with means to reason about security and privacy problems, and provide them with tools to confront them.
The Data Encryption Standard (DES ˌdiːˌiːˈɛs,_dɛz) is a symmetric-key algorithm for the encryption of digital data. Although its short key length of 56 bits makes it too insecure for modern applications, it has been highly influential in the advancement of cryptography. Developed in the early 1970s at IBM and based on an earlier design by Horst Feistel, the algorithm was submitted to the National Bureau of Standards (NBS) following the agency's invitation to propose a candidate for the protection of sensitive, unclassified electronic government data.
In cryptography, a block cipher is a deterministic algorithm that operates on fixed-length groups of bits, called blocks. Block ciphers are the elementary building blocks of many cryptographic protocols. They are ubiquitous in the storage and exchange of data, where such data is secured and authenticated via encryption. A block cipher uses blocks as an unvarying transformation. Even a secure block cipher is suitable for the encryption of only a single block of data at a time, using a fixed key.
In cryptography, Twofish is a symmetric key block cipher with a block size of 128 bits and key sizes up to 256 bits. It was one of the five finalists of the Advanced Encryption Standard contest, but it was not selected for standardization. Twofish is related to the earlier block cipher Blowfish. Twofish's distinctive features are the use of pre-computed key-dependent S-boxes, and a relatively complex key schedule. One half of an n-bit key is used as the actual encryption key and the other half of the n-bit key is used to modify the encryption algorithm (key-dependent S-boxes).
Explores the formalism and security aspects of symmetric encryption systems, including block ciphers, variable length encryption, and security definitions.
Recently, cryptographic literature has seen new block cipher designs such as PRESENT, GIFT or SKINNY that aim to be more lightweight than the current standard, i.e., AES. Even though AES family of block ciphers were designed two decades ago, they still rem ...
The stream cipher Sprout with a short internal state was proposed in FSE 2015. Although the construction guaranteed resistance to generic Time Memory Data Tradeoff attacks, there were some weaknesses in the design and the cipher was completely broken. In t ...
2018
, ,
The bit-sliding paper of Jean et al. (CHES 2017) showed that the smallest-size circuit for SPN based block ciphers such as AES, SKINNY and PRESENT can be achieved via bit-serial implementations. Their technique decreases the bit size of the datapath and na ...