In mathematics, statistics, and computational modelling, a grey box model combines a partial theoretical structure with data to complete the model. The theoretical structure may vary from information on the smoothness of results, to models that need only parameter values from data or existing literature. Thus, almost all models are grey box models as opposed to black box where no model form is assumed or white box models that are purely theoretical. Some models assume a special form such as a linear regression or neural network. These have special analysis methods. In particular linear regression techniques are much more efficient than most non-linear techniques. The model can be deterministic or stochastic (i.e. containing random components) depending on its planned use.
The general case is a non-linear model with a partial theoretical structure and some unknown parts derived from data. Models with unlike theoretical structures need to be evaluated individually, possibly using simulated annealing or genetic algorithms.
Within a particular model structure, parameters or variable parameter relations may need to be found. For a particular structure it is arbitrarily assumed that the data consists of sets of feed vectors f, product vectors p, and operating condition vectors c. Typically c will contain values extracted from f, as well as other values. In many cases a model can be converted to a function of the form:
m(f,p,q)
where the vector function m gives the errors between the data p, and the model predictions. The vector q gives some variable parameters that are the model's unknown parts.
The parameters q vary with the operating conditions c in a manner to be determined. This relation can be specified as q = Ac where A is a matrix of unknown coefficients, and c as in linear regression includes a constant term and possibly transformed values of the original operating conditions to obtain non-linear relations between the original operating conditions and q. It is then a matter of selecting which terms in A are non-zero and assigning their values.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A computer experiment or simulation experiment is an experiment used to study a computer simulation, also referred to as an in silico system. This area includes computational physics, computational chemistry, computational biology and other similar disciplines. Computer simulations are constructed to emulate a physical system. Because these are meant to replicate some aspect of a system in detail, they often do not yield an analytic solution. Therefore, methods such as discrete event simulation or finite element solvers are used.
The field of system identification uses statistical methods to build mathematical models of dynamical systems from measured data. System identification also includes the optimal design of experiments for efficiently generating informative data for fitting such models as well as model reduction. A common approach is to start from measurements of the behavior of the system and the external influences (inputs to the system) and try to determine a mathematical relation between them without going into many details of what is actually happening inside the system; this approach is called black box system identification.
Scientific modelling is a scientific activity, the aim of which is to make a particular part or feature of the world easier to understand, define, quantify, visualize, or simulate by referencing it to existing and usually commonly accepted knowledge. It requires selecting and identifying relevant aspects of a situation in the real world and then developing a model to replicate a system with those features.
The remarkable ability of deep learning (DL) models to approximate high-dimensional functions from samples has sparked a revolution across numerous scientific and industrial domains that cannot be overemphasized. In sensitive applications, the good perform ...
Accurate forecasting of photovoltaic (PV) power production is crucial for the integration of more renewable energy sources into the power grid. PV power production is highly intermittent, due to the stochastic cloud behaviour and cloud dynamics. Previous w ...
A new statistical wake meandering (SWM) model is proposed that improves on existing models in the literature. Compared to the existing SWM models, the proposed model has a closed description that does not require simulations to create look-up tables while ...