Concept

Contact (mathematics)

Summary
In mathematics, two functions have a contact of order k if, at a point P, they have the same value and k equal derivatives. This is an equivalence relation, whose equivalence classes are generally called jets. The point of osculation is also called the double cusp. Contact is a geometric notion; it can be defined algebraically as a valuation. One speaks also of curves and geometric objects having k-th order contact at a point: this is also called osculation (i.e. kissing), generalising the property of being tangent. (Here the derivatives are considered with respect to arc length.) An osculating curve from a given family of curves is a curve that has the highest possible order of contact with a given curve at a given point; for instance a tangent line is an osculating curve from the family of lines, and has first-order contact with the given curve; an osculating circle is an osculating curve from the family of circles, and has second-order contact (same tangent angle and curvature), etc. Contact forms are particular differential forms of degree 1 on odd-dimensional manifolds; see contact geometry. Contact transformations are related changes of coordinates, of importance in classical mechanics. See also Legendre transformation. Contact between manifolds is often studied in singularity theory, where the type of contact are classified, these include the A series (A0: crossing, A1: tangent, A2: osculating, ...) and the umbilic or D-series where there is a high degree of contact with the sphere. Two curves in the plane intersecting at a point p are said to have: 0th-order contact if the curves have a simple crossing (not tangent). 1st-order contact if the two curves are tangent. 2nd-order contact if the curvatures of the curves are equal. Such curves are said to be osculating. 3rd-order contact if the derivatives of the curvature are equal. 4th-order contact if the second derivatives of the curvature are equal. For each point S(t) on a smooth plane curve S, there is exactly one osculating circle, whose radius is the reciprocal of κ(t), the curvature of S at t.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.