A trypsin inhibitor (TI) is a protein and a type of serine protease inhibitor (serpin) that reduces the biological activity of trypsin by controlling the activation and catalytic reactions of proteins. Trypsin is an enzyme involved in the breakdown of many different proteins, primarily as part of digestion in humans and other animals such as monogastrics and young ruminants. Serpins – including trypsin inhibitors – are irreversible and suicide substrate-like inhibitors. It destructively alters trypsin thereby rendering it unavailable to bind with proteins for the digestion process. As a result, protease inhibitors that interfere with digestion activity have an antinutritional effect. Therefore, trypsin inhibitors are considered an anti-nutritional factor or ANF. Additionally, trypsin inhibitor partially interferes with chymotrypsin function. Trypsinogen is an inactive form of trypsin, its inactive form ensures protein aspects of the body, such as the pancreas and muscles, are not broken down. It is formed in the pancreas and activated to trypsin with enteropeptidase Chymotrypsinogen is the inactive form of chymotrypsin and has similar functions as trypsin. The presence of trypsin inhibitor has been found to result in delayed growth as well as metabolic and digestive diseases. Additionally, pancreatic hypertrophy is a common occurrence with trypsin inhibitor consumption The presence of trypsin inhibitor in a product reduces the protein efficiency and therefore results in the consumers body not being able to efficiently and fully utilize the protein. Trypsin inhibitor is present in various foods such as soybeans, grains, cereals and various additional legumes. The main function of trypsin inhibitors in these foods is to act as a defense mechanism. By having this harmful component wild animals learn that any food that contains trypsin inhibitor is a food to avoid. Trypsin inhibitor can also be essential for biological processes within the plant. Trypsin inhibitor can also naturally occur in the pancreas of species such as bovines.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (3)
CH-419: Protein mass spectrometry and proteomics
In systems biology, proteomics represents an essential pillar. The understanding of protein function and regulation provides key information to decipher the complexity of living systems. Proteomic tec
CH-210: Biochemistry
Les constituants biochimiques de l'organisme, protéines, glucides, lipides, à la lumière de l'évolution des concepts et des progrès en biologie moléculaire et génétique, sont étudiés.
CH-313: Chemical biology
Closely interfacing with bioengineering and medicine, this course provides foundational concepts in applying small-molecule chemical toolsets to probe the functions of living systems at the mechanisti
Related publications (30)

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.