Arterial switch operation (ASO) or arterial switch, is an open heart surgical procedure used to correct dextro-transposition of the great arteries (d-TGA). Its development was pioneered by Canadian cardiac surgeon William Mustard and it was named for Brazilian cardiac surgeon Adib Jatene, who was the first to use it successfully. It was the first method of d-TGA repair to be attempted, but the last to be put into regular use because of technological limitations at the time of its conception. Use of the arterial switch is historically preceded by two atrial switch methods: the Senning and Mustard procedures. The atrial switch, which was an attempt to correct the physiology of transposition, had significant shortcomings. The arterial switch sought to address them. This has emerged as an anatomically as well as physiologically appropriate solution. The Jatene procedure is ideally performed during the second week of life, before the left ventricle adjusts to the lower pulmonary pressure and is therefore unable to support the systemic circulation. In the event of sepsis or delayed diagnosis, a combination of pulmonary artery banding (PAB) and shunt construction may be used to increase the left ventricular mass sufficiently to make an arterial switch possible later in infancy. The success of ASO procedure is largely dependent on the facilities available, the skill and experience of the surgeon, and the general health of the patient. Under preferable conditions, the intra-operative and post-operative success rate is 90% or more, with a comparable survival rate after 5 years. Approximately 10% of arterial switch recipients develop residual pulmonary stenosis post-operatively, which can lead to right heart failure if left untreated; treatment usually involves endovascular stenting and/or xenograft patching. General anaesthesia and cardiopulmonary bypass are used. The aorta and pulmonary artery are detached from their native roots and reattached to the opposite root; thus, the pulmonary root becomes the neo-aorta, and the aortic root becomes the neo-pulmonary artery.