Cellular stress response is the wide range of molecular changes that cells undergo in response to environmental stressors, including extremes of temperature, exposure to toxins, and mechanical damage. Cellular stress responses can also be caused by some viral infections. The various processes involved in cellular stress responses serve the adaptive purpose of protecting a cell against unfavorable environmental conditions, both through short term mechanisms that minimize acute damage to the cell's overall integrity, and through longer term mechanisms which provide the cell a measure of resiliency against similar adverse conditions.
Cellular stress responses are primarily mediated through what are classified as stress proteins. Stress proteins often are further subdivided into two general categories: those that only are activated by stress, or those that are involved both in stress responses and in normal cellular functioning. The essential character of these stress proteins in promoting the survival of cells has contributed to them being remarkably well conserved across phyla, with nearly identical stress proteins being expressed in the simplest prokaryotic cells as well as the most complex eukaryotic ones.
Stress proteins can exhibit widely varied functions within a cell- both during normal life processes and in response to stress. For example, studies in Drosophila have indicated that when DNA encoding certain stress proteins exhibit mutation defects, the resulting cells have impaired or lost abilities such as normal mitotic division and proteasome-mediated protein degradation. As expected, such cells were also highly vulnerable to stress, and ceased to be viable at elevated temperature ranges.
Although stress response pathways are mediated in different ways depending on the stressor involved, cell type, etc., a general characteristic of many pathways especially ones where heat is the principal stressor is that they are initiated by the presence and detection of denatured proteins.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.