LiquefactionIn materials science, liquefaction is a process that generates a liquid from a solid or a gas or that generates a non-liquid phase which behaves in accordance with fluid dynamics. It occurs both naturally and artificially. As an example of the latter, a "major commercial application of liquefaction is the liquefaction of air to allow separation of the constituents, such as oxygen, nitrogen, and the noble gases." Another is the conversion of solid coal into a liquid form usable as a substitute for liquid fuels.
IsopentaneIsopentane, also called methylbutane or 2-methylbutane, is a branched-chain saturated hydrocarbon (an alkane) with five carbon atoms, with formula C5H12 or CH(CH3)2(C2H5). Isopentane is a volatile and flammable liquid. It is one of three structural isomers with the molecular formula C5H12, the others being pentane (n-pentane) and neopentane (dimethyl propane). Isopentane is commonly used in conjunction with liquid nitrogen to achieve a liquid bath temperature of −160 °C.
Entropy of fusionIn thermodynamics, the entropy of fusion is the increase in entropy when melting a solid substance. This is almost always positive since the degree of disorder increases in the transition from an organized crystalline solid to the disorganized structure of a liquid; the only known exception is helium. It is denoted as and normally expressed in joules per mole-kelvin, J/(mol·K). A natural process such as a phase transition will occur when the associated change in the Gibbs free energy is negative.
HydrateIn chemistry, a hydrate is a substance that contains water or its constituent elements. The chemical state of the water varies widely between different classes of hydrates, some of which were so labeled before their chemical structure was understood. water of crystallization Hydrates are inorganic salts "containing water molecules combined in a definite ratio as an integral part of the crystal" that are either bound to a metal center or that have crystallized with the metal complex.
Phase ruleIn thermodynamics, the phase rule is a general principle governing "pVT" systems, whose thermodynamic states are completely described by the variables pressure (p), volume (V) and temperature (T), in thermodynamic equilibrium. If F is the number of degrees of freedom, C is the number of components and P is the number of phases, then It was derived by American physicist Josiah Willard Gibbs in his landmark paper titled On the Equilibrium of Heterogeneous Substances, published in parts between 1875 and 1878.