Concept

Quasifield

Related concepts (4)
Semifield
In mathematics, a semifield is an algebraic structure with two binary operations, addition and multiplication, which is similar to a field, but with some axioms relaxed. The term semifield has two conflicting meanings, both of which include fields as a special case. In projective geometry and finite geometry (MSC 51A, 51E, 12K10), a semifield is a nonassociative division ring with multiplicative identity element. More precisely, it is a nonassociative ring whose nonzero elements form a loop under multiplication.
Planar ternary ring
In mathematics, an algebraic structure consisting of a non-empty set and a ternary mapping may be called a ternary system. A planar ternary ring (PTR) or ternary field is special type of ternary system used by Marshall Hall to construct projective planes by means of coordinates. A planar ternary ring is not a ring in the traditional sense, but any field gives a planar ternary ring where the operation is defined by . Thus, we can think of a planar ternary ring as a generalization of a field where the ternary operation takes the place of both addition and multiplication.
Near-field (mathematics)
In mathematics, a near-field is an algebraic structure similar to a division ring, except that it has only one of the two distributive laws. Alternatively, a near-field is a near-ring in which there is a multiplicative identity and every non-zero element has a multiplicative inverse. A near-field is a set together with two binary operations, (addition) and (multiplication), satisfying the following axioms: A1: is an abelian group. A2: = for all elements , , of (The associative law for multiplication).
Projective plane
In mathematics, a projective plane is a geometric structure that extends the concept of a plane. In the ordinary Euclidean plane, two lines typically intersect at a single point, but there are some pairs of lines (namely, parallel lines) that do not intersect. A projective plane can be thought of as an ordinary plane equipped with additional "points at infinity" where parallel lines intersect. Thus any two distinct lines in a projective plane intersect at exactly one point.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.