An alternator is a type of electric generator used in modern automobiles to charge the battery and to power the electrical system when its engine is running.
Until the 1960s, automobiles used DC dynamo generators with commutators. As silicon-diode rectifiers became widely available and affordable, the alternator gradually replaced the dynamo. This was encouraged by the increasing electrical power required for cars in this period, with increasing loads from larger headlamps, electric wipers, heated rear windows, and other accessories.
Most passenger vehicles and light trucks use alternators with Lundahl or 'claw-pole' field construction. This uses a shaped iron core on the rotor to produce a multi-pole field from a single coil winding. The poles of the rotor look like fingers of two hands interlocked with each other. The coil is mounted axially inside this and field current is supplied by slip rings and carbon brushes. These alternators have their field and stator windings cooled by axial airflow, produced by an external fan attached to the drive belt pulley.
Modern alternators typically use a 'compact' layout which results in better cooling. In this design, the casing has distinctive radial vent slots at each end and now encloses the fan. Two fans are used, one at each end, and the airflow is semi-radial, entering axially and leaving radially outwards. The stator windings now consist of a dense central band where the iron core and copper windings are tightly packed, and end bands where the windings are more exposed for better heat transfer. The closer core spacing from the rotor improves magnetic efficiency. The smaller, enclosed fans produce less noise, particularly at higher machine speeds. However, a small proportion of cars use a water-cooled alternator instead of an air-cooled design.
Larger vehicles sometimes use a field coil alternator, as used in large machinery. Brushless versions of these type alternators are also common in larger machinery, such as highway trucks and earthmoving machinery.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours décrit les composants d'un réseau électrique. Il explique le fonctionnement des réseaux électriques et leurs limites d'utilisation. Il introduit les outils de base permettant de les piloter.
This course focuses on the dynamic behavior of a power system. It presents the basic definitions, concepts and models for angular stability analysis with reference to transient stability, steady state
A magneto is an electrical generator that uses permanent magnets to produce periodic pulses of alternating current. Unlike a dynamo, a magneto does not contain a commutator to produce direct current. It is categorized as a form of alternator, although it is usually considered distinct from most other alternators, which use field coils rather than permanent magnets. Hand-cranked magneto generators were used to provide ringing current in telephone systems.
An internal combustion engine (ICE or IC engine) is a heat engine in which the combustion of a fuel occurs with an oxidizer (usually air) in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal combustion engine, the expansion of the high-temperature and high-pressure gases produced by combustion applies direct force to some component of the engine. The force is typically applied to pistons (piston engine), turbine blades (gas turbine), a rotor (Wankel engine), or a nozzle (jet engine).
A dynamo is an electrical generator that creates direct current using a commutator. Dynamos were the first electrical generators capable of delivering power for industry, and the foundation upon which many other later electric-power conversion devices were based, including the electric motor, the alternating-current alternator, and the rotary converter. Today, the simpler alternator dominates large scale power generation, for efficiency, reliability and cost reasons. A dynamo has the disadvantages of a mechanical commutator.
Truck engine waste heat recovery (WHR) systems have been investigated for many years. Among them, organic Rankine cycle (ORC) systems show the highest potential, but still lack efficient small-scale expansion devices, in practice. Proposed expanders are of ...
Electric Vehicles (EVs) carmakers are heavily confronted by the limited fault ride-through capabilities of actual EVs battery packs. Therefore, this paper introduces a new method of EVs battery packaging based on modular multilevel battery modules as well ...
In order to maintain stationary values of the stored energy and the plasma current in a tokamak discharge with all of the current driven noninductively, the sum of the α-heating power and the power required to provide externally driven current must be equa ...