MATH-660: Numerical methods for data assimilationThis course will review modern techniques for parameter and state estimation in a Bayesian framework for models involving differential equations, with particular attention to the high dimensional sett
PHYS-467: Machine learning for physicistsMachine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
ENV-524: Hydrological risks and structuresLe cours est une introduction à l'hydrologie statistique avec un accent mis sur l'hydrologie des petits bassins-versants de montagne. Le cours comprend une introduction générale à la gestion des risqu
PHYS-436: Statistical physics IVNoise and fluctuations play a crucial role in science and technology. This course treats stochastic methods, applying them to both classical problems and quantum systems. It emphasizes the frameworks
ME-390: Foundations of artificial intelligenceThis course provides the students with 1) a set of theoretical concepts to understand the machine learning approach; and 2) a subset of the tools to use this approach for problems arising in mechanica
MGT-499: Statistics and data scienceThis class provides a hands-on introduction to statistics and data science, with a focus on causal inference, applications to sustainability issues using Python, and dissemination of scientific result
MATH-413: Statistics for data scienceStatistics lies at the foundation of data science, providing a unifying theoretical and methodological backbone for the diverse tasks enountered in this emerging field. This course rigorously develops
EE-311: Fundamentals of machine learningCe cours présente une vue générale des techniques d'apprentissage automatique, passant en revue les algorithmes, le formalisme théorique et les protocoles expérimentaux.