In mathematics and probability theory, continuum percolation theory is a branch of mathematics that extends discrete percolation theory to continuous space (often Euclidean space Rn). More specifically, the underlying points of discrete percolation form types of lattices whereas the underlying points of continuum percolation are often randomly positioned in some continuous space and form a type of point process. For each point, a random shape is frequently placed on it and the shapes overlap each with other to form clumps or components. As in discrete percolation, a common research focus of continuum percolation is studying the conditions of occurrence for infinite or giant components. Other shared concepts and analysis techniques exist in these two types of percolation theory as well as the study of random graphs and random geometric graphs.
Continuum percolation arose from an early mathematical model for wireless networks, which, with the rise of several wireless network technologies in recent years, has been generalized and studied in order to determine the theoretical bounds of information capacity and performance in wireless networks. In addition to this setting, continuum percolation has gained application in other disciplines including biology, geology, and physics, such as the study of porous material and semiconductors, while becoming a subject of mathematical interest in its own right.
In the early 1960s Edgar Gilbert proposed a mathematical model in wireless networks that gave rise to the field of continuum percolation theory, thus generalizing discrete percolation. The underlying points of this model, sometimes known as the Gilbert disk model, were scattered uniformly in the infinite plane R2 according to a homogeneous Poisson process. Gilbert, who had noticed similarities between discrete and continuum percolation, then used concepts and techniques from the probability subject of branching processes to show that a threshold value existed for the infinite or "giant" component.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In probability, statistics and related fields, a Poisson point process is a type of random mathematical object that consists of points randomly located on a mathematical space with the essential feature that the points occur independently of one another. The Poisson point process is often called simply the Poisson process, but it is also called a Poisson random measure, Poisson random point field or Poisson point field.
In mathematics, stochastic geometry is the study of random spatial patterns. At the heart of the subject lies the study of random point patterns. This leads to the theory of spatial point processes, hence notions of Palm conditioning, which extend to the more abstract setting of random measures. There are various models for point processes, typically based on but going beyond the classic homogeneous Poisson point process (the basic model for complete spatial randomness) to find expressive models which allow effective statistical methods.
In statistics and probability theory, a point process or point field is a collection of mathematical points randomly located on a mathematical space such as the real line or Euclidean space. Point processes can be used for spatial data analysis, which is of interest in such diverse disciplines as forestry, plant ecology, epidemiology, geography, seismology, materials science, astronomy, telecommunications, computational neuroscience, economics and others.
The goal of this class is to acquire mathematical tools and engineering insight about networks whose structure is random, as well as learning and control techniques applicable to such network data.
Random alloys are multicomponent systems where the atomic type on each lattice site is independent of the atom types on any other lattice site. The fluctuations in local atomic configurations inherent to the random alloy prevents the accurate application o ...
This thesis is devoted to the study of the local fields in the Ising model. The scaling limit of the critical Ising model is conjecturally described by Conformal Field Theory. The explicit predictions for the building blocks of the continuum theory (spin a ...
Percolation, in its most general interpretation, refers to the “flow” of something (a physical agent, data or information) in a network, possibly accompanied by some nonlinear dynamical processes on the network nodes (sometimes denoted reaction–diffusion s ...