Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Plutonium-238 (238Pu or Pu-238) is a radioactive isotope of plutonium that has a half-life of 87.7 years. Plutonium-238 is a very powerful alpha emitter; as alpha particles are easily blocked, this makes the plutonium-238 isotope suitable for usage in radioisotope thermoelectric generators (RTGs) and radioisotope heater units. The density of plutonium-238 at room temperature is about 19.8 g/cc. The material will generate about 0.57 watts per gram of 238Pu. The bare sphere critical mass of metallic plutonium-238 is not precisely known, but its calculated range is between 9.04 and 10.07 kilograms. Plutonium-238 was the first isotope of plutonium to be discovered. It was synthesized by Glenn Seaborg and associates in December 1940 by bombarding uranium-238 with deuterons, creating neptunium-238. → + 2_neutron The neptunium isotope then undergoes β− decay to plutonium-238, with a half-life of 2.12 days: → + _Electron + _Electron Antineutrino Plutonium-238 naturally decays to uranium-234 and then further along the radium series to lead-206. Historically, most plutonium-238 has been produced by Savannah River in their weapons reactor, by irradiating with neutrons neptunium-237 (half life 2.144Ma). _neutron → Neptunium-237 is a by-product of the production of plutonium-239 weapons-grade material, and when the site was shut down in 1988, 238Pu was mixed with about 16% 239Pu. Human radiation experiments Plutonium was first synthesized in 1940 and isolated in 1941 by chemists at the University of California, Berkeley. The Manhattan Project began shortly after the discovery, with most early research (pre-1944) carried out using small samples manufactured using the large cyclotrons at the Berkeley Rad Lab and Washington University in St. Louis. Much of the difficulty encountered during the Manhattan Project regarded the production and testing of nuclear fuel. Both uranium and plutonium were eventually determined to be fissile, but in each case they had to be purified to select for the isotopes suitable for an atomic bomb.
Lyesse Laloui, Alessio Ferrari, Angelica Tuttolomondo
Timothy Goodman, René Chavan, Anastasia Xydou