MATH-476: Optimal transportThe first part is devoted to Monge and Kantorovitch problems, discussing the existence and the properties of the optimal plan. The second part introduces the Wasserstein distance on measures and devel
MATH-432: Probability theoryThe course is based on Durrett's text book
Probability: Theory and Examples.
It takes the measure theory approach to probability theory, wherein expectations are simply abstract integrals.
COM-502: Dynamical system theory for engineersLinear and nonlinear dynamical systems are found in all fields of science and engineering. After a short review of linear system theory, the class will explain and develop the main tools for the quali
MATH-518: Ergodic theoryThis is an introductory course in ergodic theory, providing a comprehensive overlook over the main aspects and applications of this field.
MATH-487: Topics in stochastic analysisThis course offers an introduction to topics in stochastic analysis, oriented about theory of multi-scale stochastic dynamics. We shall learn the fundamental ideas, relevant techniques, and in general
MATH-437: Calculus of variationsIntroduction to classical Calculus of Variations and a selection of modern techniques. The Calculus of Variations aims at showing the existence of minimisers (or critical points) of functionals that n
MATH-502: Distribution and interpolation spacesThe goal of this course is to give an introduction to the theory of distributions and cover the fundamental results of Sobolev spaces including fractional spaces that appear in the interpolation theor