In mathematics, in the area of complex analysis, the general difference polynomials are a polynomial sequence, a certain subclass of the Sheffer polynomials, which include the Newton polynomials, Selberg's polynomials, and the Stirling interpolation polynomials as special cases. The general difference polynomial sequence is given by where is the binomial coefficient. For , the generated polynomials are the Newton polynomials The case of generates Selberg's polynomials, and the case of generates Stirling's interpolation polynomials. Given an analytic function , define the moving difference of f as where is the forward difference operator. Then, provided that f obeys certain summability conditions, then it may be represented in terms of these polynomials as The conditions for summability (that is, convergence) for this sequence is a fairly complex topic; in general, one may say that a necessary condition is that the analytic function be of less than exponential type. Summability conditions are discussed in detail in Boas & Buck. The generating function for the general difference polynomials is given by This generating function can be brought into the form of the generalized Appell representation by setting , , and .

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.