Fatty acid desaturases (also called unsaturases) are a family of enzymes that convert saturated fatty acids into unsaturated fatty acids and polyunsaturated fatty acids. For the common fatty acids of the C18 variety, desaturases convert stearic acid into oleic acid. Other desaturases convert oleic acid into linolenic acid, which is the precursor to alpha-linolenic acid, gamma-linolenic acid, and eicosatrienoic acid. Two subgroups of desaturases are recognized: Delta - indicating that the double bond is created at a fixed position from the carboxyl end of a fatty acid chain. For example, Δ9-desaturase creates a double bond between the ninth and tenth carbon atom from the carboxyl end. Omega - indicating the double bond is created at a fixed position from the methyl end of a fatty acid chain. For instance, ω3 desaturase creates a double bond between the third and fourth carbon atom from the methyl end. In other words, it creates an omega-3 fatty acid. For example, Δ6 desaturation introduces a double bond between carbons 6 and 7 of linoleic acid (LA C18H32O2; 18:2-n6) and α-linolenic acid (ALA: C18H30O2; 18:3-n3), creating γ-linolenic acid (GLA: C18H30O2,18:3-n6) and stearidonic acid (SDA: C18H28O2; 18:4-n3) respectively. In the biosynthesis of essential fatty acids, an elongase alternates with various desaturases (for example, Δ6-desaturase) repeatedly inserts an ethyl group, then forms a double bond. Desaturases have diiron active sites reminiscent of methane monooxygenase. These enzymes are O2-dependent, consistent with their function as either hydroxylation or oxidative dehydrogenation. Desaturases produce unsaturated fatty acids. Unsaturated fatty acids help maintain structure and function of membranes. Highly unsaturated fatty acids (HUFAs) are incorporated into phospholipids and participate in cell signaling. Unsaturated fatty acids and their derived fats increase the fluidity of membranes. Fatty acid desaturase appear in all organisms: for example, bacteria, fungus, plants, animals and humans.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (1)
BIO-212: Biological chemistry I
Biochemistry is a key discipline for the Life Sciences. Biological Chemistry I and II are two tightly interconnected courses that aim to describe and understand in molecular terms the processes that m
Related publications (36)
Related concepts (11)
Essential fatty acid interactions
There are many fatty acids found in nature. The two essential fatty acids are omega-3 and omega-6, which are necessary for good human health. However, the effects of the ω-3 (omega-3) and ω-6 (omega-6) essential fatty acids (EFAs) are characterized by their interactions. The interactions between these two fatty acids directly effect the signaling pathways and biological functions like inflammation, protein synthesis, neurotransmitters in our brain, and metabolic pathways in the human body.
Trans fat
Trans fat, also called trans-unsaturated fatty acids, or trans fatty acids, is a type of unsaturated fat that occurs in foods. Trace concentrations of trans fats occur naturally, but large amounts are found in some processed foods. Since consumption of trans fats is unhealthy, artificial trans fats are highly regulated or banned in many nations. However, they are still widely consumed in developing nations, resulting in hundreds of thousands of deaths each year.
Essential fatty acid
Essential fatty acids, or EFAs, are fatty acids that humans and other animals must ingest because the body requires them for good health, but cannot synthesize them. Only two fatty acids are known to be essential for humans: alpha-linolenic acid (an omega-3 fatty acid) and linoleic acid (an omega-6 fatty acid). These are supplied to the body either as the free fatty acid, or more commonly as some glyceride derivative. Deficiency in these fatty acids is rare.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.