Essential fatty acid interactionsThere are many fatty acids found in nature. The two essential fatty acids are omega-3 and omega-6, which are necessary for good human health. However, the effects of the ω-3 (omega-3) and ω-6 (omega-6) essential fatty acids (EFAs) are characterized by their interactions. The interactions between these two fatty acids directly effect the signaling pathways and biological functions like inflammation, protein synthesis, neurotransmitters in our brain, and metabolic pathways in the human body.
Trans fatTrans fat, also called trans-unsaturated fatty acids, or trans fatty acids, is a type of unsaturated fat that occurs in foods. Trace concentrations of trans fats occur naturally, but large amounts are found in some processed foods. Since consumption of trans fats is unhealthy, artificial trans fats are highly regulated or banned in many nations. However, they are still widely consumed in developing nations, resulting in hundreds of thousands of deaths each year.
Essential fatty acidEssential fatty acids, or EFAs, are fatty acids that humans and other animals must ingest because the body requires them for good health, but cannot synthesize them. Only two fatty acids are known to be essential for humans: alpha-linolenic acid (an omega-3 fatty acid) and linoleic acid (an omega-6 fatty acid). These are supplied to the body either as the free fatty acid, or more commonly as some glyceride derivative. Deficiency in these fatty acids is rare.
Unsaturated fatAn unsaturated fat is a fat or fatty acid in which there is at least one double bond within the fatty acid chain. A fatty acid chain is monounsaturated if it contains one double bond, and polyunsaturated if it contains more than one double bond. A saturated fat has no carbon to carbon double bonds, so the maximum possible number of hydrogens bonded to the carbons, and is "saturated" with hydrogen atoms. To form carbon to carbon double bonds, hydrogen atoms are removed from the carbon chain.
Polyunsaturated fatty acidIn biochemistry and nutrition, polyunsaturated fatty acids (abbreviated PUFAs) are fatty acids that contain more than one double bond in their backbone. This class includes many important compounds, such as essential fatty acids and those that give drying oils their characteristic property. Polyunsaturated fatty acids are precursors to and are derived from polyunsaturated fats. Polyunsaturated fatty acids are a subclass of fatty acids possessing two or more carbon–carbon double bonds.
Α-Linolenic acidα-Linolenic acid, also known as alpha-Linolenic acid (ALA) (from Greek alpha meaning "first" and linon meaning flax), is an n−3, or omega-3, essential fatty acid. ALA is found in many seeds and oils, including flaxseed, walnuts, chia, hemp, and many common vegetable oils. In terms of its structure, it is named all-cis-9,12,15-octadecatrienoic acid. In physiological literature, it is listed by its lipid number, 18:3, and (n−3). It is a carboxylic acid with an 18-carbon chain and three cis double bonds.
Omega-3 fatty acidOmega−3 fatty acids, also called Omega−3 oils, ω−3 fatty acids or n−3 fatty acids, are polyunsaturated fatty acids (PUFAs) characterized by the presence of a double bond, three atoms away from the terminal methyl group in their chemical structure. They are widely distributed in nature, being important constituents of animal lipid metabolism, and they play an important role in the human diet and in human physiology. The three types of omega−3 fatty acids involved in human physiology are α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA).
FatIn nutrition, biology, and chemistry, fat usually means any ester of fatty acids, or a mixture of such compounds, most commonly those that occur in living beings or in food. The term often refers specifically to triglycerides (triple esters of glycerol), that are the main components of vegetable oils and of fatty tissue in animals; or, even more narrowly, to triglycerides that are solid or semisolid at room temperature, thus excluding oils.
Eicosapentaenoic acidEicosapentaenoic acid (EPA; also icosapentaenoic acid) is an omega-3 fatty acid. In physiological literature, it is given the name 20:5(n-3). It also has the trivial name timnodonic acid. In chemical structure, EPA is a carboxylic acid with a 20-carbon chain and five cis double bonds; the first double bond is located at the third carbon from the omega end. EPA is a polyunsaturated fatty acid (PUFA) that acts as a precursor for prostaglandin-3 (which inhibits platelet aggregation), thromboxane-3, and leukotriene-5 eicosanoids.
LipidLipids are a broad group of organic compounds which include fats, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E and K), monoglycerides, diglycerides, phospholipids, and others. The functions of lipids include storing energy, signaling, and acting as structural components of cell membranes. Lipids have applications in the cosmetic and food industries, and in nanotechnology.