Spontaneous fission (SF) is a form of radioactive decay that is found only in very heavy chemical elements. The nuclear binding energy of the elements reaches its maximum at an atomic mass number of about 56 (e.g., iron-56); spontaneous breakdown into smaller nuclei and a few isolated nuclear particles becomes possible at greater atomic mass numbers. By 1908, physicists understood that alpha decay involved ejection of helium nuclei from a decaying atom. Like cluster decay, alpha decay is not typically categorized as a process of fission. The first nuclear fission process discovered was fission induced by neutrons. Because cosmic rays produce some neutrons, it was difficult to distinguish between induced and spontaneous events. Cosmic rays can be reliably shielded by a thick layer of rock or water. Spontaneous fission was identified in 1940 by Soviet physicists Georgy Flyorov and Konstantin Petrzhak by their observations of uranium in the Moscow Metro Dinamo station, underground. Spontaneous fission occurs over practical observation times only for atomic masses of 232 atomic mass units or more. These are nuclei at least as heavy as thorium-232which has a half-life somewhat longer than the age of the universe. ^232Th, ^235U, and ^238U are primordial nuclides and have left evidence of undergoing spontaneous fission in their minerals. The known elements most susceptible to spontaneous fission are the synthetic high-atomic-number actinides and transactinides with atomic number 100 onward. For naturally occurring thorium-232, uranium-235, and uranium-238, spontaneous fission does occur rarely, but in the vast majority of the radioactive decay of these atoms, alpha decay or beta decay occurs instead. Hence, the spontaneous fission of these isotopes is usually negligible, except in using the exact branching ratios when finding the radioactivity of a sample of these elements, or in applications that are very sensitive to even minuscule numbers of fission neutrons (such as nuclear weapon design).
, , , ,
, ,
,