The Verneuil method (or Verneuil process or Verneuil technique), also called flame fusion, was the first commercially successful method of manufacturing synthetic gemstones, developed in the late 1883 by the French chemist Auguste Verneuil. It is primarily used to produce the ruby, sapphire and padparadscha varieties of corundum, as well as the diamond simulants rutile, strontium titanate and spinel. The principle of the process involves melting a finely powdered substance using an oxyhydrogen flame, and crystallising the melted droplets into a boule. The process is considered to be the founding step of modern industrial crystal growth technology, and remains in wide use to this day.
Since the study of alchemy began, there have been attempts to synthetically produce precious stones, and ruby, being one of the prized cardinal gems, has long been a prime candidate. In the 19th century, significant advances were achieved, with the first ruby formed by melting two smaller rubies together in 1817, and the first microscopic crystals created from alumina (aluminium oxide) in a laboratory in 1837. By 1877, chemist Edmond Frémy had devised an effective method for commercial ruby manufacture by using molten baths of alumina, yielding the first gemstone-quality synthetic stones. The Parisian chemist Auguste Verneuil collaborated with Frémy on developing the method, but soon went on to independently develop the flame fusion process, which would eventually come to bear his name.
One of Verneuil's sources of inspiration for developing his own method was the appearance of synthetic rubies sold by an unknown Genevan merchant in 1880. These "Geneva rubies" were dismissed as artificial at the time, but are now believed to be the first rubies produced by flame fusion, predating Verneuil's work on the process by 20 years. After examining the "Geneva rubies", Verneuil came to the conclusion that it was possible to recrystallise finely ground aluminium oxide into a large gemstone.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A diamond simulant, diamond imitation or imitation diamond is an object or material with gemological characteristics similar to those of a diamond. Simulants are distinct from synthetic diamonds, which are actual diamonds exhibiting the same material properties as natural diamonds. Enhanced diamonds are also excluded from this definition. A diamond simulant may be artificial, natural, or in some cases a combination thereof.
Hydrothermal synthesis includes the various techniques of crystallizing substances from high-temperature aqueous solutions at high vapor pressures; also termed "hydrothermal method". The term "hydrothermal" is of geologic origin. Geochemists and mineralogists have studied hydrothermal phase equilibria since the beginning of the twentieth century. George W. Morey at the Carnegie Institution and later, Percy W.
A ruby is a pinkish red to blood-red colored gemstone, a variety of the mineral corundum (aluminium oxide). Ruby is one of the most popular traditional jewelry gems and is very durable. Other varieties of gem-quality corundum are called sapphires. Ruby is one of the traditional cardinal gems, alongside amethyst, sapphire, emerald, and diamond. The word ruby comes from ruber, Latin for red. The color of a ruby is due to the element chromium.
Two-dimensional (2D) materials such as graphene and transition metal dichalcogenide (TMDC) are considered as one of the most promising material platforms for future electronic devices, due to their ultra-thin thickness and fascinating electrical and optica ...
EPFL2022
, , ,
2D semiconducting transition metal dichalcogenides comprise an emerging class of materials with distinct properties, including large exciton binding energies that reach hundreds of millielectronvolts and valley-contrasting physics. Thanks to the van der Wa ...
Analytical scanning and transmission electron microscopy were used to study the microstructure of Ce,Er-doped Na0.5La0.5MoO4 laser crystals. Crystals were grown by the Czochralski method from the melts with a nominal composition of Na0.5La0.5−xCexEr0.005Mo ...