F-algebraIn mathematics, specifically in , F-algebras generalize the notion of algebraic structure. Rewriting the algebraic laws in terms of morphisms eliminates all references to quantified elements from the axioms, and these algebraic laws may then be glued together in terms of a single functor F, the signature. F-algebras can also be used to represent data structures used in programming, such as lists and trees. The main related concepts are initial F-algebras which may serve to encapsulate the induction principle, and the construction F-coalgebras.
AnamorphismIn computer programming, an anamorphism is a function that generates a sequence by repeated application of the function to its previous result. You begin with some value A and apply a function f to it to get B. Then you apply f to B to get C, and so on until some terminating condition is reached. The anamorphism is the function that generates the list of A, B, C, etc. You can think of the anamorphism as unfolding the initial value into a sequence.
CoinductionIn computer science, coinduction is a technique for defining and proving properties of systems of concurrent interacting objects. Coinduction is the mathematical to structural induction. Coinductively defined types are known as codata and are typically infinite data structures, such as streams. As a definition or specification, coinduction describes how an object may be "observed", "broken down" or "destructed" into simpler objects. As a proof technique, it may be used to show that an equation is satisfied by all possible implementations of such a specification.
Fold (higher-order function)In functional programming, fold (also termed reduce, accumulate, aggregate, compress, or inject) refers to a family of higher-order functions that analyze a recursive data structure and through use of a given combining operation, recombine the results of recursively processing its constituent parts, building up a return value. Typically, a fold is presented with a combining function, a top node of a data structure, and possibly some default values to be used under certain conditions.
CorecursionIn computer science, corecursion is a type of operation that is to recursion. Whereas recursion works analytically, starting on data further from a base case and breaking it down into smaller data and repeating until one reaches a base case, corecursion works synthetically, starting from a base case and building it up, iteratively producing data further removed from a base case. Put simply, corecursive algorithms use the data that they themselves produce, bit by bit, as they become available, and needed, to produce further bits of data.