Concept

Biomimetic synthesis

Summary
Biomimetic synthesis is an area of organic chemical synthesis that is specifically biologically inspired. The term encompasses both the testing of a "biogenetic hypothesis" (conjectured course of a biosynthesis in nature) through execution of a series of reactions designed to parallel the proposed biosynthesis, as well as programs of study where a synthetic reaction or reactions aimed at a desired synthetic goal are designed to mimic one or more known enzymic transformations of an established biosynthetic pathway. The earliest generally cited example of a biomimetic synthesis is Sir Robert Robinson's organic synthesis of the alkaloid tropinone. A more recent example is E.J. Corey's carbenium-mediated cyclization of an engineered linear polyene to provide a tetracyclic steroid ring system, which built upon studies of cationic cyclizations of linear polyenes by the Albert Eschenmoser and Gilbert Stork, and the extensive studies of the W.S. Johnson to define the requirements to initiate and terminate the cyclization, and to stabilize the cationic carbenium group during the cyclization (as nature accomplishes via enzymes during biosynthesis of steroids such as cholesterol). In relation to the second definition, synthetic organic or inorganic catalysts applied to accomplish a chemical transformation accomplished in nature by a biocatalyst (e.g., a purely proteinaceous catalyst, a metal or other cofactor bound to an enzyme, or a ribozyme) can be said to be accomplishing a biomimetic synthesis, where design and characterization of such catalytic systems has been termed biomimetic chemistry. Proto-daphniphylline is a precursor in the biosynthesis of a family of alkaloids found in Daphniphyllum macropodum. It is of interest due to its complex molecular structure making it a challenging target for conventional organic synthesis methods due to the fused ring structure and the spiro carbon centre. Based on a proposed biosynthesis pathway of proto-daphniphylline from squalene, Clayton Heathcock and co-workers developed a remarkably elegant and short total synthesis of proto-daphniphylline from simple starting materials.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.