Concept

Kernel embedding of distributions

Summary
In machine learning, the kernel embedding of distributions (also called the kernel mean or mean map) comprises a class of nonparametric methods in which a probability distribution is represented as an element of a reproducing kernel Hilbert space (RKHS). A generalization of the individual data-point feature mapping done in classical kernel methods, the embedding of distributions into infinite-dimensional feature spaces can preserve all of the statistical features of arbitrary distributions, while allowing one to compare and manipulate distributions using Hilbert space operations such as inner products, distances, projections, linear transformations, and spectral analysis. This learning framework is very general and can be applied to distributions over any space on which a sensible kernel function (measuring similarity between elements of ) may be defined. For example, various kernels have been proposed for learning from data which are: vectors in , discrete classes/categories, strings, graphs/networks, images, time series, manifolds, dynamical systems, and other structured objects. The theory behind kernel embeddings of distributions has been primarily developed by Alex Smola, Le Song , Arthur Gretton, and Bernhard Schölkopf. A review of recent works on kernel embedding of distributions can be found in. The analysis of distributions is fundamental in machine learning and statistics, and many algorithms in these fields rely on information theoretic approaches such as entropy, mutual information, or Kullback–Leibler divergence. However, to estimate these quantities, one must first either perform density estimation, or employ sophisticated space-partitioning/bias-correction strategies which are typically infeasible for high-dimensional data. Commonly, methods for modeling complex distributions rely on parametric assumptions that may be unfounded or computationally challenging (e.g.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.