Wavelength-division multiplexingIn fiber-optic communications, wavelength-division multiplexing (WDM) is a technology which multiplexes a number of optical carrier signals onto a single optical fiber by using different wavelengths (i.e., colors) of laser light. This technique enables bidirectional communications over a single strand of fiber, also called wavelength-division duplexing, as well as multiplication of capacity. The term WDM is commonly applied to an optical carrier, which is typically described by its wavelength, whereas frequency-division multiplexing typically applies to a radio carrier which is more often described by frequency.
In-band on-channelIn-band on-channel (IBOC) is a hybrid method of transmitting digital radio and analog radio broadcast signals simultaneously on the same frequency. The name refers to the new digital signals being broadcast in the same AM or FM band (in-band), and associated with an existing radio channel (on-channel). By utilizing additional digital subcarriers or sidebands, digital information is "multiplexed" on existing signals, thus avoiding re-allocation of the broadcast bands. IBOC relies on unused areas of the existing spectrum to send its signals.
SubcarrierA subcarrier is a sideband of a radio frequency carrier wave, which is modulated to send additional information. Examples include the provision of colour in a black and white television system or the provision of stereo in a monophonic radio broadcast. There is no physical difference between a carrier and a subcarrier; the "sub" implies that it has been derived from a carrier, which has been amplitude modulated by a steady signal and has a constant frequency relation to it.
TransponderIn telecommunications, a transponder is a device that, upon receiving a signal, emits a different signal in response. The term is a blend of transmitter and responder. In air navigation or radio frequency identification, a flight transponder is an automated transceiver in an aircraft that emits a coded identifying signal in response to an interrogating received signal.
Shared mediumIn telecommunication, a shared medium is a medium or channel of information transfer that serves more than one user at the same time. In order for most channels to function correctly, no more than one user can be transmitting at a time, so a channel access method must always be in effect. In circuit switching, each user typically gets a fixed share of the channel capacity. A multiplexing scheme divides up the capacity of the medium. Common multiplexing schemes include time-division multiplexing and frequency-division multiplexing.
Polarization-division multiplexingPolarization-division multiplexing (PDM) is a physical layer method for multiplexing signals carried on electromagnetic waves, allowing two channels of information to be transmitted on the same carrier frequency by using waves of two orthogonal polarization states. It is used in microwave links such as satellite television downlinks to double the bandwidth by using two orthogonally polarized feed antennas in satellite dishes. It is also used in fiber optic communication by transmitting separate left and right circularly polarized light beams through the same optical fiber.
Carrier-sense multiple accessCarrier-sense multiple access (CSMA) is a medium access control (MAC) protocol in which a node verifies the absence of other traffic before transmitting on a shared transmission medium, such as an electrical bus or a band of the electromagnetic spectrum. Under CSMA, a transmitter uses a carrier-sense mechanism to determine whether another transmission is in progress before initiating a transmission. That is, it tries to detect the presence of a carrier signal from another node before attempting to transmit.
Signal transmissionIn telecommunications, transmission is the process of sending or propagating an analog or digital signal via a medium that is wired, wireless, or fiber-optic. Transmission system technologies typically refer to physical layer protocol duties such as modulation, demodulation, line coding, equalization, error control, bit synchronization and multiplexing, but it may also involve higher-layer protocol duties, for example, digitizing an analog signal, and data compression.
Digital Signal 1Digital Signal 1 (DS1, sometimes DS-1) is a T-carrier signaling scheme devised by Bell Labs. DS1 is the primary digital telephone standard used in the United States, Canada and Japan and is able to transmit up to 24 multiplexed voice and data calls over telephone lines. E-carrier is used in place of T-carrier outside the United States, Canada, Japan, and South Korea. DS1 is the logical bit pattern used over a physical T1 line; in practice, the terms DS1 and T1 are often used interchangeably.
Multichannel multipoint distribution serviceMultichannel multipoint distribution service (MMDS), formerly known as broadband radio service (BRS) and also known as wireless cable, is a wireless telecommunications technology, used for general-purpose broadband networking or, more commonly, as an alternative method of cable television programming reception. MMDS is used in Australia, Barbados, Belarus, Bolivia, Brazil, Cambodia, Canada, Czech Republic, Dominican Republic, Iceland, India, Kazakhstan, Kyrgyzstan, Lebanon, Mexico, Nepal, Nigeria, Pakistan, Panama, Portugal (including Madeira), Russia, Slovakia, Sri Lanka, Sudan, Thailand, Ukraine, United States, Uruguay and Vietnam.