Concept

Solar dynamo

Summary
The solar dynamo is a physical process that generates the Sun's magnetic field. It is explained with a variant of the dynamo theory. A naturally occurring electric generator in the Sun's interior produces electric currents and a magnetic field, following the laws of Ampère, Faraday and Ohm, as well as the laws of fluid dynamics, which together form the laws of magnetohydrodynamics. The detailed mechanism of the solar dynamo is not known and is the subject of current research. A dynamo converts kinetic energy into electric-magnetic energy. An electrically conducting fluid with shear or more complicated motion, such as turbulence, can temporarily amplify a magnetic field through Lenz's law: fluid motion relative to a magnetic field induces electric currents in the fluid that distort the initial field. If the fluid motion is sufficiently complicated, it can sustain its own magnetic field, with advective fluid amplification essentially balancing diffusive or ohmic decay. Such systems are called self-sustaining dynamos. The Sun is a self-sustaining dynamo that converts convective motion and differential rotation within the Sun to electric-magnetic energy. Currently, the geometry and width of the tachocline are hypothesized to play an important role in models of the solar dynamo by winding up the weaker poloidal field to create a much stronger toroidal field. However, recent radio observations of cooler stars and brown dwarfs, which do not have a radiative core and only have a convection zone, have demonstrated that they maintain large-scale, solar-strength magnetic fields and display solar-like activity despite the absence of tachoclines. This suggests that the convection zone alone may be responsible for the function of the solar dynamo. Solar cycle The most prominent time variation of the solar magnetic field is related to the quasi-periodic 11-year solar cycle, characterized by an increasing and decreasing number and size of sunspots. Sunspots are visible as dark patches on the Sun's photosphere and correspond to concentrations of magnetic field.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.