Summary
Noise is unwanted sound considered unpleasant, loud, or disruptive to hearing. From a physics standpoint, there is no distinction between noise and desired sound, as both are vibrations through a medium, such as air or water. The difference arises when the brain receives and perceives a sound. Acoustic noise is any sound in the acoustic domain, either deliberate (e.g., music or speech) or unintended. In contrast, noise in electronics may not be audible to the human ear and may require instruments for detection. In audio engineering, noise can refer to the unwanted residual electronic noise signal that gives rise to acoustic noise heard as a hiss. This signal noise is commonly measured using A-weighting or ITU-R 468 weighting. In experimental sciences, noise can refer to any random fluctuations of data that hinders perception of a signal. Sound is measured based on the amplitude and frequency of a sound wave. Amplitude measures how forceful the wave is. The energy in a sound wave is measured in decibels (dB), the measure of loudness, or intensity of a sound; this measurement describes the amplitude of a sound wave. Decibels are expressed in a logarithmic scale. On the other hand, pitch describes the frequency of a sound and is measured in hertz (Hz). The main instrument to measure sounds in the air is the Sound Level Meter. There are many different varieties of instruments that are used to measure noise - Noise Dosimeters are often used in occupational environments, noise monitors are used to measure environmental noise and noise pollution, and recently smartphone-based sound level meter applications (apps) are being used to crowdsource and map recreational and community noise. A-weighting is applied to a sound spectrum to represent the sound that humans are capable of hearing at each frequency. Sound pressure is thus expressed in terms of dBA. 0 dBA is the softest level that a person can hear. Normal speaking voices are around 65 dBA. A rock concert can be about 120 dBA.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (38)
Related concepts (47)
Noise control
Noise control or noise mitigation is a set of strategies to reduce noise pollution or to reduce the impact of that noise, whether outdoors or indoors. The main areas of noise mitigation or abatement are: transportation noise control, architectural design, urban planning through zoning codes, and occupational noise control. Roadway noise and aircraft noise are the most pervasive sources of environmental noise.
Noise
Noise is unwanted sound considered unpleasant, loud, or disruptive to hearing. From a physics standpoint, there is no distinction between noise and desired sound, as both are vibrations through a medium, such as air or water. The difference arises when the brain receives and perceives a sound. Acoustic noise is any sound in the acoustic domain, either deliberate (e.g., music or speech) or unintended. In contrast, noise in electronics may not be audible to the human ear and may require instruments for detection.
Health effects from noise
Noise health effects are the physical and psychological health consequences of regular exposure to consistent elevated sound levels. Noise from traffic, in particular, is considered by the World Health Organization to be one of the worst environmental stressors for humans, second only to air pollution. Elevated workplace or environmental noise can cause hearing impairment, tinnitus, hypertension, ischemic heart disease, annoyance, and sleep disturbance. Changes in the immune system and birth defects have been also attributed to noise exposure.
Show more
Related courses (70)
ENV-468: Occupational and environmental health
The quality of our environment - occupational and general - is an important determinant of our health. This course reviews the physical, chemical and biological pollutants present in our environment
DH-406: Machine learning for DH
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
ENV-367: Environmental and construction law
Ce cours donne aux étudiant-e-s les connaissances de base nécessaires pour comprendre les dimensions juridiques de leur activité professionnelle concernant l'aménagement du territoire et la protection
Show more