Predictive analytics is a form of business analytics applying machine learning to generate a predictive model for certain business applications. As such, it encompasses a variety of statistical techniques from predictive modeling and machine learning that analyze current and historical facts to make predictions about future or otherwise unknown events. It represents a major subset of machine learning applications; in some contexts, it is synonymous with machine learning. In business, predictive models exploit patterns found in historical and transactional data to identify risks and opportunities. Models capture relationships among many factors to allow assessment of risk or potential associated with a particular set of conditions, guiding decision-making for candidate transactions. The defining functional effect of these technical approaches is that predictive analytics provides a predictive score (probability) for each individual (customer, employee, healthcare patient, product SKU, vehicle, component, machine, or other organizational unit) in order to determine, inform, or influence organizational processes that pertain across large numbers of individuals, such as in marketing, credit risk assessment, fraud detection, manufacturing, healthcare, and government operations including law enforcement. Predictive analytics is a set of business intelligence (BI) technologies that uncovers relationships and patterns within large volumes of data that can be used to predict behavior and events. Unlike other BI technologies, predictive analytics is forward-looking, using past events to anticipate the future. Predictive analytics statistical techniques include data modeling, machine learning, AI, deep learning algorithms and data mining. Often the unknown event of interest is in the future, but predictive analytics can be applied to any type of unknown whether it be in the past, present or future. For example, identifying suspects after a crime has been committed, or credit card fraud as it occurs.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (31)
ENG-209: Data science for engineers with Python
Ce cours est divisé en deux partie. La première partie présente le langage Python et les différences notables entre Python et C++ (utilisé dans le cours précédent ICC). La seconde partie est une intro
DH-406: Machine learning for DH
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
CH-315: Modeling lab
In this course we give a hands-on introduction on the use of modeling and data in chemistry. After an introduction in the different tools used by computational chemists, we discuss three topics in mor
Show more
Related lectures (75)
Predicting Bitcoin's Price with ML and Twitter Inputs
Showcases a project predicting Bitcoin's price using Twitter and ML, achieving 60% accuracy.
Dimensional Analysis of Explosions
Explores dimensional analysis of large explosions using tabulated values to predict explosive behavior.
Linear Regression and Logistic Regression
Covers linear and logistic regression for regression and classification tasks, focusing on loss functions and model training.
Show more
Related publications (664)

Analytical Model of Single-Sided Linear Induction Motors for High-Speed Applications

André Hodder, Lucien André Félicien Pierrejean, Simone Rametti

This article describes a field-based analytical model of single-sided linear induction motors (SLIMs) that explicitly considers the following effects altogether: finite motor length, magnetomotive force mmf space harmonics, slot effect, edge effect, and ta ...
2024

3D printed large amplitude torsional microactuators powered by ultrasound

Mahmut Selman Sakar, Mehdi Ali Gadiri, Junsun Hwang, Amit Yedidia Dolev

Here, we introduce a design, fabrication, and control methodology for large amplitude torsional microactuators powered by ultrasound. The microactuators are 3D printed from two polymers with drastically different elastic moduli as a monolithic compliant me ...
2024

Artificial intelligence of things for synergizing smarter eco-city brain, metabolism, and platform: Pioneering data-driven environmental governance

Jeffrey Huang, Simon Elias Bibri

Emerging smarter eco-cities, inherently intertwined with environmental governance, function as experimental sites for testing novel technological solutions and implementing environmental reforms aimed at addressing complex challenges. However, despite sign ...
Elsevier2024
Show more
Related concepts (16)
Predictive modelling
Predictive modelling uses statistics to predict outcomes. Most often the event one wants to predict is in the future, but predictive modelling can be applied to any type of unknown event, regardless of when it occurred. For example, predictive models are often used to detect crimes and identify suspects, after the crime has taken place. In many cases, the model is chosen on the basis of detection theory to try to guess the probability of an outcome given a set amount of input data, for example given an email determining how likely that it is spam.
Big data
Big data primarily refers to data sets that are too large or complex to be dealt with by traditional data-processing application software. Data with many entries (rows) offer greater statistical power, while data with higher complexity (more attributes or columns) may lead to a higher false discovery rate. Though used sometimes loosely partly because of a lack of formal definition, the interpretation that seems to best describe big data is the one associated with a large body of information that we could not comprehend when used only in smaller amounts.
Decision support system
A decision support system (DSS) is an information system that supports business or organizational decision-making activities. DSSs serve the management, operations and planning levels of an organization (usually mid and higher management) and help people make decisions about problems that may be rapidly changing and not easily specified in advance—i.e. unstructured and semi-structured decision problems. Decision support systems can be either fully computerized or human-powered, or a combination of both.
Show more
Related MOOCs (6)
Path Integral Methods in Atomistic Modelling
The course provides an introduction to the use of path integral methods in atomistic simulations. The path integral formalism allows to introduce quantum mechanical effects on the equilibrium and (ap
Path Integral Methods in Atomistic Modelling
The course provides an introduction to the use of path integral methods in atomistic simulations. The path integral formalism allows to introduce quantum mechanical effects on the equilibrium and (ap
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.