In geometry, the truncated great icosahedron (or great truncated icosahedron) is a nonconvex uniform polyhedron, indexed as U55. It has 32 faces (12 pentagrams and 20 hexagons), 90 edges, and 60 vertices. It is given a Schläfli symbol t{3,} or t0,1{3,} as a truncated great icosahedron. Cartesian coordinates for the vertices of a truncated great icosahedron centered at the origin are all the even permutations of (±1, 0, ±3/τ) (±2, ±1/τ, ±1/τ3) (±(1+1/τ2), ±1, ±2/τ) where τ = (1+√5)/2 is the golden ratio (sometimes written φ). Using 1/τ2 = 1 − 1/τ one verifies that all vertices are on a sphere, centered at the origin, with the radius squared equal to 10−9/τ. The edges have length 2. This polyhedron is the truncation of the great icosahedron: The truncated great stellated dodecahedron is a degenerate polyhedron, with 20 triangular faces from the truncated vertices, and 12 (hidden) pentagonal faces as truncations of the original pentagram faces, the latter forming a great dodecahedron inscribed within and sharing the edges of the icosahedron. The great stellapentakis dodecahedron is a nonconvex isohedral polyhedron. It is the dual of the truncated great icosahedron. It has 60 intersecting triangular faces.