Concept

Great dodecicosahedron

Related concepts (4)
Great icosicosidodecahedron
In geometry, the great icosicosidodecahedron (or great icosified icosidodecahedron) is a nonconvex uniform polyhedron, indexed as U48. It has 52 faces (20 triangles, 12 pentagrams, and 20 hexagons), 120 edges, and 60 vertices. Its vertex figure is a crossed quadrilateral. It shares its vertex arrangement with the truncated dodecahedron. It additionally shares its edge arrangement with the great ditrigonal dodecicosidodecahedron (having the triangular and pentagonal faces in common) and the great dodecicosahedron (having the hexagonal faces in common).
Great ditrigonal dodecicosidodecahedron
In geometry, the great ditrigonal dodecicosidodecahedron (or great dodekified icosidodecahedron) is a nonconvex uniform polyhedron, indexed as U42. It has 44 faces (20 triangles, 12 pentagons, and 12 decagrams), 120 edges, and 60 vertices. Its vertex figure is an isosceles trapezoid. It shares its vertex arrangement with the truncated dodecahedron. It additionally shares its edge arrangement with the great icosicosidodecahedron (having the triangular and pentagonal faces in common) and the great dodecicosahedron (having the decagrammic faces in common).
Uniform star polyhedron
In geometry, a uniform star polyhedron is a self-intersecting uniform polyhedron. They are also sometimes called nonconvex polyhedra to imply self-intersecting. Each polyhedron can contain either star polygon faces, star polygon vertex figures, or both. The complete set of 57 nonprismatic uniform star polyhedra includes the 4 regular ones, called the Kepler–Poinsot polyhedra, 5 quasiregular ones, and 48 semiregular ones. There are also two infinite sets of uniform star prisms and uniform star antiprisms.
Truncated dodecahedron
In geometry, the truncated dodecahedron is an Archimedean solid. It has 12 regular decagonal faces, 20 regular triangular faces, 60 vertices and 90 edges. This polyhedron can be formed from a regular dodecahedron by truncating (cutting off) the corners so the pentagon faces become decagons and the corners become triangles. It is used in the cell-transitive hyperbolic space-filling tessellation, the bitruncated icosahedral honeycomb.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.